Строительство, ремонт, дизайн

Двускатная крыша образуется на базе каркаса, сочетающего в себе элементарность устройства и непревзойдённую надёжность. Но этими достоинствами костяк кровли в два прямоугольных ската может похвастаться только в случае тщательной подборки стропильных ног.

Параметры стропильной системы двускатной крыши

К расчётам стоит приступать, если вы понимаете, что стропильная система двускатной кровли - это комплекс треугольников, самых жёстких элементов каркаса. Они собираются из досок, размер которых играет особую роль.

Длина стропил

Определить длину прочных досок для стропильной системы поможет формула a²+ b²= c², выведенная Пифагором.

Длину стропила можно найти, зная ширину дома и высоту крыши

Параметр «a» обозначает высоту и выбирается самостоятельно. Он зависит от того, будет ли подкровельное пространство жилым, также имеет определённые рекомендации, если планируется мансарда.

За буквой «b» стоит ширина здания, разделённая надвое. А «c» представляет собой гипотенузу треугольника, то есть длину стропильных ног.

Допустим, что ширина половины дома равна трём метрам, а крышу решено сделать высотой два метра. В этом случае длина стропильных ног будет достигать 3,6 м (c=√a²+b²=4+√9=√13≈3,6).

К цифре, полученной из формулы Пифагора, следует приплюсовать 60–70 см. Лишние сантиметры понадобятся, чтобы вынести стропильную ногу за стену и сделать необходимые запилы.

Шестиметровое стропило - самое длинное, поэтому подходит в качестве стропильной ноги

Максимальная длина бруса, используемого в качестве стропильной ноги, – 6 м. Если требуется прочная доска большей длины, то прибегают к приёму сращения - прибиванию к стропильной ноге отрезка от ещё одного бруса.

Сечение стропильных ног

Для различных элементов стропильной системы существуют свои стандартные размеры:

  • 10х10 или 15х15 см - для бруса мауэрлата;
  • 10х15 или 10х20 см - для стропильной ноги;
  • 5х15 или 5х20 см - для прогона и подкоса;
  • 10х10 или 10х15 см - для стойки;
  • 5х10 или 5х15 см - для лежня;
  • 2х10, 2,5х15 см - для обрешётин.

Толщина каждой детали несущей конструкции кровли обусловливается нагрузкой, которую ей предстоит испытывать.

Брус сечением 10х20 см идеально подходит для создания стропильной ноги

На сечение стропильных ног двускатной кровли влияет:

  • тип строительного сырья, ведь «выдержка» бревна, обычных и клеёных брусов разнится;
  • длина стропильной ноги;
  • вид древесины, из которой были выстроганы стропила;
  • протяжённость просвета между стропильными ногами.
  • Наиболее существенно на сечении стропильных ног сказывается шаг стропил. Увеличение расстояния между брусьями влечёт за собой усиление давления на несущую конструкцию кровли, а это обязывает строителя использовать толстые стропильные ноги.

    Таблица: сечение стропил в зависимости от длины и шага

    Переменное воздействие на стропильную систему

    Давление на стропильные ноги бывает постоянным и переменным.

    Время от времени и с разной интенсивностью на несущую конструкцию крыши воздействуют ветер, снег и атмосферные осадки. В общем, скат кровли сравним с парусом, который под напором природных явлений может порваться.

    Ветер стремится опрокинуть или приподнять крышу, поэтому важно произвести все расчёты правильно

    Переменная ветровая нагрузка на стропила определяется по формуле W = Wo × k x c, где W - это показатель ветровой нагрузки, Wo - значение ветровой нагрузки, характерной для определённого участка России, k - поправочный коэффициент, обусловливаемый высотой сооружения и характером местности, а c - аэродинамический коэффициент.

    Аэродинамический коэффициент может колебаться в рамках от -1,8 до +0,8. Минусовое значение характерно для поднимающейся крыши, а плюсовое - для кровли, на которую ветер давит. При упрощённом расчёте с ориентацией на улучшение прочности аэродинамический коэффициент считают равным 0,8.

    Расчёт ветрового давления на крышу основывается на местонахождении дома

    Нормативное значение ветрового давления узнают по карте 3 приложения 5 в СНиП 2.01.07–85 и специальной таблице. Коэффициент, учитывающий изменение ветрового давления по высоте, тоже стандартизован.

    Таблица: нормативное значение ветрового давления

    Таблица: значение коэффициента k

    На ветровой нагрузке отражается не только местность. Большое значение имеет зона расположения жилья. За стеной из высоких зданий дому почти ничего не грозит, но на открытом пространстве ветер может стать для него серьёзным врагом.

    Снеговая нагрузка на систему стропил вычисляется по формуле S = Sg × µ, то есть вес снежной массы на 1 м² умножается на поправочный коэффициент, на значении которого отражается степень наклона кровли.

    Вес снегового пласта указан в СНиП «Стропильные системы» и определяется типом местности, где построено здание.

    Снеговая нагрузка на крышу зависит от того, где расположен дом

    Поправочный коэффициент, если скаты кровли кренятся менее чем на 25°, приравнивается к единице. А в случае наклона крыши на 25–60° этот показатель уменьшается до 0,7.

    Когда крыша наклонена более чем на 60 градусов, снеговую нагрузку сбрасывают со счетов. Всё-таки с крутой кровли снег скатывается быстро, не успевая оказать негативного влияния на стропила.

    Постоянные нагрузки

    Нагрузками, воздействующим беспрерывно, считают вес кровельного пирога, включая обрешётку, утеплитель, плёнки и отделочные материалы для обустройства мансарды.

    Кровельный пирог создаёт постоянное давление на стропила

    Вес кровли - это сумма веса всех материалов, использованных при строительстве крыши. В среднем он равен 40–45 кг/м.кв. По правилам на 1 м² стропильной системы не должно приходиться более 50 кг веса кровельных материалов.

    Чтобы в прочности стропильной системы совсем не осталось сомнений, к расчёту нагрузки на стропильные ноги стоит добавлять 10%.

    Таблица: вес кровельных материалов на 1 м²

    Тип кровельного финишного покрытия Вес в кг на 1 м²
    Рулонное битумно-полимерное полотно 4–8
    Битумно-полимерная мягкая черепица 7–8
    Ондулин 3–4
    Металлическая черепица 4–6
    Профнастил, фальцевая кровля, оцинкованные металлические листы 4–6
    Цементно-песчаная черепица 40–50
    Керамическая черепица 35–40
    Шифер 10–14
    Сланцевая кровля 40–50
    Медь 8
    Зелёная кровля 80–150
    Черновой настил 18–20
    Обрешётка 8–10
    Сама стропильная система 15–20

    Количество брусьев

    Сколько стропил понадобится для обустройства каркаса двускатной кровли, устанавливают, разделив ширину крыши на шаг между брусьями и прибавив к полученному значению единицу. Она обозначает добавочное стропило, которое потребуется поставить на край кровли.

    Допустим, между стропилами решено оставлять по 60 см, а длина крыши составляет 6 м (600 см). Получается, что необходимо 11 стропил (с учётом добавочного бруса).

    Стропильная система двускатной крыши - это конструкция из определённого количества стропил

    Шаг брусьев несущей конструкции кровли

    Чтобы определить расстояние между брусьями несущей конструкции кровли, следует обратить пристальное внимание на такие моменты, как:

    • вес кровельных материалов;
    • длина и толщина бруса - будущей стропильной ноги;
    • градус наклона кровли;
    • уровень ветровой и снеговой нагрузок.

    Через 90–100 см стропила принято располагать в случае выбора лёгкого кровельного материала

    Нормальным для стропильных ног считается шаг в 60–120 см. Выбор в пользу 60 или 80 см делают в случае строительства кровли, наклоненной на 45˚. Таким же маленьким шаг должен быть при желании покрыть деревянный каркас крыши тяжёлыми материалами вроде керамической черепицы, асбоцементного шифера и цементно-песчаной плитки.

    Таблица: шаг стропил в зависимости от длины и сечения

    Формулы расчёта стропильной системы двускатной крыши

    Расчёт стропильной системы сводится к установлению давления на каждый брус и определению оптимального сечения.

    При расчёте стропильной системы двускатной кровли действуют следующим образом:

    1. По формуле Qr=AxQ узнают, какова нагрузка на погонный метр каждой стропильной ноги. Qr - это распределённая нагрузка на погонный метр стропильной ноги, выраженная в кг/м, A - расстояние между стропилами в метрах, а Q - суммарная нагрузка в кг/м².
    2. Переходят к определению минимального сечения бруса-стропила. Для этого изучают данные таблицы, занесённой в ГОСТ 24454–80 «Пиломатериалы хвойных пород. Размеры».
    3. Ориентируясь на стандартные параметры, выбирают ширину сечения. А высоту сечения вычисляют, используя формулу H ≥ 8,6·Lmax·sqrt(Qr/(B·Rизг)), если уклон крыши α < 30°, или формулу H ≥ 9,5·Lmax·sqrt(Qr/(B·Rизг)), когда уклон крыши α > 30°. H - это высота сечения в см, Lmax - рабочий участок стропильной ноги максимальной длины в метрах, Qr - распределённая нагрузка на погонный метр стропильной ноги в кг/м, B - ширина сечения см, Rизг - сопротивление древесины на изгиб, кг/см². Если материал произведён из сосны или ели, то Rизг может быть равен 140 кг/см² (1 сорт древесины), 130 кг/см² (2 сорт) или 85 кг/см² (3 сорт). Sqrt - это квадратный корень.
    4. Проверяют, соответствует ли величина прогиба нормативам. Она не должна быть больше цифры, которая получается в результате деления L на 200. Под L понимается длина рабочего участка. Соответствие величины прогиба соотношению L/200 выполнимо только при верности неравенства 3,125·Qr·(Lmax)³/(B·H³) ≤ 1. Qr обозначает распределённую нагрузку на погонный метр стропильной ноги (кг/м), Lmax - рабочий участок стропильной ноги максимальной длины (м), B - ширину сечения (см), а H - высоту сечения (см).
    5. Когда выше представленное неравенство нарушается, показатели B и H увеличивают.

    Таблица: номинальные размеры толщины и ширины пиломатериала (мм)

    Толщина доски - ширина сечения (B) Ширина доски - высота сечения (H)
    16 75 100 125 150 - - - - -
    19 75 100 125 150 175 - - - -
    22 75 100 125 150 175 200 225 - -
    25 75 100 125 150 175 200 225 250 275
    32 75 100 125 150 175 200 225 250 275
    40 75 100 125 150 175 200 225 250 275
    44 75 100 125 150 175 200 225 250 275
    50 75 100 125 150 175 200 225 250 275
    60 75 100 125 150 175 200 225 250 275
    75 75 100 125 150 175 200 225 250 275
    100 - 100 125 150 175 200 225 250 275
    125 - - 125 150 175 200 225 250 -
    150 - - - 150 175 200 225 250 -
    175 - - - - 175 200 225 250 -
    200 - - - - - 200 225 250 -
    250 - - - - - - - 250 -

    Пример расчёта несущей конструкции

    Предположим, что α (угол наклона крыши) = 36°, A (расстояние между стропилами) = 0,8 м, а Lmax (рабочий участок стропильной ноги максимальной длины) = 2,8 м. В качестве брусьев используется материал из сосны первого сорта, а это значит, что Rизг = 140 кг/см².

    Для покрытия кровли выбрана цементно-песчаная черепица, и поэтому вес крыши составляет 50 кг/м². Суммарная нагрузка (Q), которую испытывает каждый квадратный метр, равна 303 кг/м². А для строительства стропильной системы используются брусья толщиной 5 см.

    Отсюда вытекают следующие вычислительные действия:

    1. Qr=A·Q= 0,8·303=242 кг/м - распределённая нагрузка на погонный метр бруса-стропила.
    2. H ≥ 9,5·Lmax·sqrt(Qr/B·Rизг).
    3. H ≥ 9,5·2,8·sqrt(242/5·140).
    4. 3,125·Qr·(Lmax)³/B·H³ ≤ 1.
    5. 3,125·242·(2,8)³ / 5·(17,5)³= 0,61.
    6. H ≥ (примерная высота сечения стропила).

    В таблице стандартных размеров нужно найти высоту сечения стропил, близкую к показателю 15,6 см. Подходящим является параметр, равный 17,5 см (при ширине сечения в 5 см).

    Эта величина вполне соответствует показателю прогиба в нормативных документах, и это доказывается неравенством 3,125·Qr·(Lmax)³/B·H³ ≤ 1. Подставив в него значения (3,125·242·(2,8)³ / 5·(17,5)³), получится обнаружить, что 0,61 < 1. Можно сделать вывод: сечение пиломатериала выбрано верно.

    Видео: подробный расчёт стропильной системы

    Расчёт стропильной системы двускатной крыши - это целый комплекс вычислений. Чтобы брусья справились с возлагаемой на них задачей, строителю нужно безошибочно определить длину, количество и сечение материала, узнать нагрузку на него и выяснить, каким должен быть шаг между стропилами.

    На выбор сечения стропил и шага их установки существенное влияние оказывает собственный вес кровли, материал которой, в свою очередь, зависит от уклона скатов крыши.

    Скаты одной кровли обычно устраивают с одинаковым уклоном, который выбирают в зависимости от кровельного материала, способа его укладки, архитектурных требований и экономических соображений, а также от района строительства. С крутых кровель, с уклоном 45° и более, быстро удаляется атмосферная вода и снег, что учитывают при строительстве зданий в районах с большим количеством осадков. Но с увеличением уклона повышается стоимость кровли. Например, при возведении кровли с уклоном 45° требуется в полтора раза больше материала, чем для плоской, а при уклоне крыши в 60° - в два раза больше. В тех районах страны, где бывают сильные ветры, наиболее рационально устраивать пологие кровли, так как ветровая нагрузка на скаты таких кровель меньше и наоборот, в заснеженных районах с несильными ветрами, лучше делать крутые скаты, уменьшая снеговую нагрузку за счет скатывания снега.

    Уклон скатов крыш в различных нормативных документах выражается по разному: в виде безразмерных величин (отношения высоты к половине пролета), в процентах и градусах (рис. 13). Самое понятное определение уклона в виде безразмерных единиц. Когда крыша строится, то конечно же, никто не измеряет наклон скатов в градусах транспортиром. Если при строительстве отсутствует проектная документация, задающая высоту устройства конька, поступают проще: измеряют пролет здания, находят центр и от него вверх с помощью ровной деревянной рейки выносят высоту равную, например, половине пролета (уклон 1: 1) или трети половины пролета (уклон 1: 3), или любую другую. Процентное определение уклона, на взгляд многих строителей, только запутывает работу.

    Рис. 13. Взаимосвязь между безразмерной величиной уклона скатов крыши, углом в градусах и процентах

    На уклон скатов крыши влияет и вид кровельного материала, так как при строительстве необходимо учитывать размер кровельного материала, способ его крепления, технологичность укладки и предусмотреть дальнейшую его ремонтопригодность и доступность обслуживания. Для скатных крыш применяют различные кровельные материалы: стальные оцинкованные листы, плоские и волнистые асбестоцементные и битумные листы, керамическую, цементную и металлическую черепицу, рубероид и другие. Выбор кровельного материала определяет величину угла наклона крыши. Чем плотнее материал кровли и герметичнее его стыки, тем меньше может быть уклон крыши, и наоборот, чем мельче размеры штучного кровельного материала, например, черепицы, тем круче должна быть крыша. Это объясняется не только большим количеством соединений малоразмерных деталей, а значит, возможным протеканием, но и большим весом кровли. Чем тяжелее кровельный материал, тем больший угол наклона нужно придать скатам. Рекомендуемые уклоны скатных крыш приведены в таблице 5.

    Таблица 5

    Ре­ко­мен­ду­е­мые укло­ны скат­ных крыш
    Ма­те­ри­ал скат­ной кров­ли Уклон кры­ши Мас­са 1 м², кг
    Вол­ни­стые а/ц ли­сты: сред­не­го про­фи­ля от 1: 10 до 1: 2 11
    уси­лен­но­го про­фи­ля от 1: 5 до 1: 1 13
    Вол­ни­стые цел­лю­лоз­но-би­тум­ные ли­сты от 1: 10 и более 6
    Мяг­кая (гиб­кая) че­ре­пи­ца от 1: 10 и более 9–15
    Из оцин­ко­ван­ной же­сти: с оди­нар­ны­ми фаль­ца­ми от 1: 4 и более 3–6,5
    с двой­ны­ми фаль­ца­ми от. 1: 5 и более 3–6,5
    Ке­ра­ми­че­ская че­ре­пи­ца от 1: 5 до 1: 0,5 50–60
    Це­мент­ная че­ре­пи­ца от 1: 5 до 1: 0,5 45–70
    Ме­тал­ло­че­ре­пи­ца от 1: 5 и более 5

    Необходимо отметить, что в таблице приведены рекомендованные практикой и нормативными документами уклоны скатов кровель из различных материалов и их усредненный вес на квадратный метр. Однако рынок строительных материалов намного богаче, фирмы-изготовители кровельных материалов постоянно совершенствуют свою продукцию: снижают вес и модернизируют технические характеристики изделий. При выборе конкретного материала на кровлю лучше использовать техническую документацию фирмы-изготовителя.

    В вес кровли входит вес обрешетки. Обрешеткой называют несущий элемент кровли, к которому собственно крепится сама кровля. Различают два вида обрешеток: сплошная и разреженная (рис. 14). Чтобы определить требуемый вид обрешетки и шаг установки решетин, нужно заранее определиться с видом кровельного покрытия.

    рис. 14. Обрешетки скатных крыш

    Разреженная обрешетка делается под жесткие кровельные материалы, то есть под те материалы, которые сами способны нести на себе снеговую и ветровую нагрузку и при этом не прогибаться и, тем более, не разрушаться. Разреженную обрешетку выполняют из деревянных жердей или пиленых брусков. В настоящее время в продаже появились П-образные оцинкованные металлические решетины. Шаг установки решетин и размер их сечения зависят от вида кровельного материала.

    Под кровли из крупноразмерных штучных элементов: асбестоцементные листы среднего и унифицированного профиля длиной до 1,3 м и цементноволокнистые листы шаг раскладки обрешетки выбирают таким, чтобы под каждым листом оказалось три решетины. Обычно шаг решетин составляет 60 см под асбестоцементные и цементноволокнистые листы любой унифицированной длины. Сечение решетин обычно принимается 60×60 мм, можно и меньше, например, 40×60 мм, но тогда их нужно устанавливать чаще. Под волнистые целлюлозобитумные листы типа ондулин шаг обрешетки выбирается от имеющегося уклона скатов крыши. Он выбирается размером 45 см для уклонов от 1: 6 до 1: 4 и 60 см - для уклонов более 1: 4. Для крыш с уклоном скатов менее 1: 6 под ондулин делается сплошная обрешетка.

    Под кровли из малоразмерных штучных элементов, например, из черепицы, шаг обрешетки принимается таким, чтобы каждая отдельная черепица легла на две решетины. Он может составлять от 16 до 40 см. Самый распространенный шаг примерно 33 см. При расчете веса кровельного покрытия лучше заранее определиться с выбором типа черепицы и уточнить шаг обрешетки. Обрешетку под черепицу при однослойном покрытии стелют из обрезных брусков сечением 50×50 или 50×60 мм, при двухслойном или тяжелой штампованной черепицей - сечением 60×60 мм.

    При устройстве кровель из стального профилированного настила и его разновидности металлочерепицы, шаг решетин выбирается исходя из несущей способности материала. Обычно он составляет 35–40 см и равен поперечному шагу профиля металлочерепицы. Для обрешетки используются доски шириной примерно 100 мм.

    Под мягкие кровельные материалы делается сплошная обрешетка. Применяемый для определения типа обрешетки термин - «сплошная» совсем не означает, что доски решетин прибиваются впритирку друг к другу. Обычно таким образом крепятся только две верхних и две нижних решетины, остальные образуют между собой зазор от 2 до 5 см. Решетины могут быть изготовлены из окромленого (ровного обрезанного с двух сторон по длине) или не кромленого теса толщиной 2–2,5 см. При применении не кромленых досок их располагают по скату кровли по типу комель к вершине, обзол с не кромленого теса должен быть обязательно снят.

    Обрешетку под стальную кровлю выполняют сплошной или разреженной. Разреженную обрешетку делают из брусков сечением 50×50 мм, досок - 50×120 (140) мм, сплошную - из досок толщиной 30–40 мм. Бруски располагают через 200–250 мм друг от друга. Через каждые 1,4 м прибивают доски такой же толщины, как бруски, шириной до 140 мм (более широкие доски могут коробиться), которые необходимы для стыковки на них лежачих фальцев картин. Верх крыши - конек сбивают из досок шириной 200 мм.

    В последнее время при использовании новейших кровельных покрытий стали часто использоваться контробрешетки. Контробрешеткой называют вторую, чаще всего сплошную обрешетку, выполненную под углом к первой. Угол наклона контробрешетки делают примерно равным 45°. Наклон решетин не только увеличивает пространственную жесткость крыши, но и позволяет сделать практически любую кровлю, за исключением, пожалуй, только черепичной, но при желании можно сделать и ее.

    Сплошная обрешетка из досок в настоящее время почти не применяется ее заменили на сплошную обшивку скатов влагостойкой фанерой или плитами ОСП (OSB) (табл. 6).

    Таблица 6

    Приблизительный вес материала кровельного покрытия можно принять по таблице 5, а вес обрешетки нужно рассчитать исходя из выбранного материала и конструкции кровли. Для деревянных обрешеток применяются бруски хвойных пород. Объемный вес одного кубометра древесины равен 500–550 кг/м³. Если будет использована фанера или ОСП, то их объемный вес равен 600–650 кг/м³.

    При определении нагрузки возникающей от собственного веса конструкци необходимо расчетную величину нагрузки увеличить на коэффициент надежности γ f = 1,1.

    Монтаж стропильной системы своими руками - сложный процесс, требующий строгого соблюдения технологии и безошибочных расчетов.

    На несущую конструкцию действуют постоянные нагрузки, учитывая которые выбирают , элементов обрешетки и контробрешетки и др.

    Предлагаем ознакомиться с поэтапным процессом монтажа стропил и их расчетом.

    Материал для стропил

    Для монтажа стропил используют брус или доску определенного сечения, которое рассчитывается в процессе проектировки с учетом всех нагрузок.

    Применяют только тщательно просушенные, обработанные антисептиком и огнеупорным составом заготовки, у которых минимальное количество сучков и отсутствуют даже мелкие трещины.

    Влажность древесины должна находиться в пределах 20-23 процентов.

    Некоторые фирмы предлагают уже заготовленные и нужным образом подготовленные стропильные «ноги».

    Их достаточно правильно собрать на месте строительства.

    Есть также готовые стропильные фермы.

    Их монтаж еще более упрощается.

    Металлические конструкции

    Крайне редко используют металлические стропила.

    У них много недостатков: дороговизна, большой вес (оказывается дополнительная нагрузка на стены и фундамент), необходимость привлечения крана, появление ржавчины на сварочных швах и т.д.

    Металлическую систему в основном применяют для промышленных построек.

    Комбинированные элементы

    Минус дерева в том, что оно со временем деформируется под воздействием нагрузок.

    Поэтому используют комбинированные стропила из деревянных и металлических элементов.

    Металлические применяются для повышения несущей способности конструкции.

    К ним относятся ригели, подкосы, бабки и т.п.

    Минусом такой стропильной системы является накопление конденсата на металле, что в свою очередь может спровоцировать загнивание деревянных частей.

    Элементы стропильных конструкций

    Конструктивно стропильная система состоит из следующих элементов:

    1. Стропильные ноги, образующие скелет крыши.
    2. Мауэрлаты - брусья, которые укладываются по периметру стен. На них опираются стропильные ноги.
    3. Вертикальные стойки, на которые опирается «конек» крыши.
    4. Коньковый прогон.
    5. Подкосы. Их применение позволяет использовать стропила меньшего сечения при неизменной нагрузке, а также увеличить длину пролетов между стенами.
    6. Ригели. Они предотвращают прогиб стропильных ног.
    7. Затяжки. Необходимы для того, чтобы снизить нагрузку на стены.
    8. Обрешетка и контробрешетка.

    Стропильные системы

    Однако полученное значение является усредненным.

    1. По таблице находят значение (S), соответствующее региону проживания;
    2. Определяют угол уклона скатов. Для этого высоту крыши делят на половину пролета, после чего по таблице ниже выбирают соответствующее значение;
    3. Высчитывают значение коэффициента m из учета уклона скатов.
      Если уклон меньше 30 градусов, то m = 1,
      если от 60 и выше град., то m = 0,
      если от 30 до 60 град., то значение находят по формуле m = 0.033x(60-«угол ската»);
    4. Находят максимальную нагрузку на крышу по формуле Smax=S*m.

    Нахождение ветровой нагрузки

    Расчет ведется по данным из карты ветровых нагрузок и нескольким формулам, как в первом случае.

    Также задействуют таблицу нормативного давления ветра и таблицу с коэффициентами.

    Расчет ведется в следующем порядке:

    1. По карте находят значение воздействия ветра на 1 квадратный метр крыши из учета района проживания (W0);
    2. По таблице «Значение коэффициента k» находят коэффициент, учитывая высоту дома и местность, в которой он расположен;
    3. Исходя из угла уклона скатов крыши, выбирают аэродинамический коэффициент (C). Он находится в пределах от -1.8 (α меньше 30 градусов) до + 0.8 (α больше 30 град.)
    4. Находят по формуле Wm= Wo·K·C значение нагрузки от ветра.

    Вес кровли

    Вес элементов стропильной системы: обрешетки, чернового покрытия и т. д.

    Пользуются приведенными ниже данными.

    Скатная крыша имеет систему наклонных плоскостей (скатов). Конструкция стропильной системы подбирается и рассчитывается, учитывая наличие опор для неё, тип покрытия, размеры и форму перекрываемого здания. Специальный расчёт поможет подобрать необходимый размер стропильной ноги и обеспечить прочность крыши.

    Виды стропильных систем двухскатной крыши

    Схема стропильной системы выбирается, исходя из условий количества опор для неё и расстояния между ними.

    Наслонные стропила опираются на внешние несущие стены зданий и на дополнительные внутренние опоры, в случае если расстояние между основными опорами превышает 4,5 м. Стропильная нога снизу опирается на опорный брус (мауэрлат), который передаёт вес от крыши на стену здания. Верхний конец соединяется с коньковым прогоном и другой стропильной ногой.

    1, 2 — висячая стропильная система. 3, 4 — наслонная стропильная система. a — стропила, b — затяжка, c — ригель, d — прогон, e — мауэрлат, f — подкос, g — стойка.

    Висячий вид стропильных систем имеет затяжку на уровне нижних опорных узлов или выше их и не предполагает промежуточных опор. Расстояние между внешними несущими опорами не должно превышать 6,5 м. Этот вариант устройства стропильной конструкции можно отнести к треугольным фермам. Расстояние в плане между ними принимается 1,3-1,8 м.

    Состав покрытия

    Кровля

    Этернитовые кровли представляют собой плоские или волнистые листы из асбестоцемента. Это дешёвый вид кровельного покрытия, который достаточно прост в монтаже. В последнее время исследования показали его вредное влияние на здоровье человека.

    К шиферным относятся и сланцевые кровли. Они сооружаются из природного материала слоистой структуры сланца. Еврошифер, ондулин являются потомками обыкновенного шифера. Представляют собой спрессованное стекловолокно или целлюлозу, которые пропитаны битумом.

    Металлическое покрытие часто используется в строительстве жилых зданий. Оно надёжно защищает дом от атмосферного влияния, имеет малый вес и не трудоёмко в монтаже. К этому виду кровель можно отнести профнастил, оцинкованную сталь, алюцинк.

    Рулонные относятся к мягким видам кровель. Они водонепроницаемы, устойчивы к влиянию окружающей среды и удобны в монтаже. К ним относятся такие виды:

    • рубероид (рубемаст, стекломаст, еврорубероид, толь и др.);
    • битумно-полимерные (стеклоизол, стеклокром, линокром и др.);
    • мембранные кровли (ПВХ, термопластичные мембраны, плёнки из синтетического каучука и др.).

    Если раньше черепичные кровли были только керамическими, то сегодня встречаются: цементно-песчаные, битумные и металлочерепица.

    Деревянные кровли используются редко из-за трудности устройства. Они бывают гонтовые, драничные, шиндебль, лемех, тёсовые.

    Светопропускающие кровли изготавливаются из полимерных материалов и стекла. К ним можно отнести сотовый поликарбонат, гофрированный поливинилхлорид, триплекс, полиэстер и др.

    Обрешётка

    Кровельный настил или обрешётка является основанием для кровли. Его делают из досок или брусков. При устройстве металлической, деревянной или черепичной крыши брус обрешётки принимается сечением:

    • 50х50 мм при расстоянии между стропилами — 1,0-1,1 м;
    • 50х60(h) мм при шаге стропил — 1,2-1,3 м;
    • 60х60 мм при шаге — 1,4-1,5 м.

    Для других видов можно использовать доски 2,5 см толщиной. Под рулонную кровлю устраивается двойной настил из досок. Рабочий нижний слой настилается перпендикулярно направлению стропил с прозорами. Верхний укладывается под углом 45° к нижележащему слою. Ширина досок для него принимается не более 8 см, а толщина составляет 2 см.

    Стропила

    Деревянные стропила применяются бревенчатые, спиленные на один кант, из пилёного леса (брус, доска, уложенная на ребро). Для наслонных стропил лучше подойдёт круглое сечение бревна. Диаметр их составляет 12-20 см. Преимущества использования бревна по сравнению с доской или брусом следующие:

    • экономия древесины (для выдерживания одинаковых нагрузок для круглого сечения нужен меньший диаметр исходного материала);
    • выше предел огнестойкости;
    • меньший расход металлического крепежа;
    • более высокие показатели жёсткости и долговечности.

    Расчёт наслонной стропильной ноги

    Между стропильными ногами допускается шаг 1,0-1,5 м. Сечение их определяется по расчёту, исходя из прочности, а также жёсткости конструкции. Для этого определяется расчётная постоянная нагрузка на стропилу, включающая в себя расчет постоянных нагрузок на один погонный метр кровли и снеговую нагрузку.

    Схема распредеения нагрузки по стропильной ноге: α — угол наклона кровли, q — общие постоянные нагрузки, q

    Исходными данными для расчета принимаются:

    • шаг установки стропильных ног;
    • угол наклона кровли;
    • ширина и высота крыши.

    Выбор параметров, а также подбор большинства коэффициентов зависит от материала кровельного покрытия и подробного состава кровельного пирога.

    Для наклонных кровель постоянные нагрузки рассчитываются по формуле:

    Стропильная нога рассчитывается также на жёсткость (прогиб). Здесь используется нормативная нагрузка:

    • α — угол наклона кровли;
    • n, n c — коэффициенты надёжности для нагрузок от снега — 1,4, нагрузок от крыши — 1,1;
    • g — вес 1 м 2 , который воспринимает стропильная нога (кровля, обрешётка, стропила);
    • а — шаг стропильных ног (по оси).

    • S g — вес снега на 1 м 2 , который зависит от климатического района;
    • с е — коэффициент сноса снега за счёт влияния ветра и других атмосферных воздействий, зависит от режима эксплуатации кровли;
    • c t — термический коэффициент.

    Коэффициенты с е и c t принимаются согласно требованиям СП 20.13330.2011 раздел 10 «Снеговые нагрузки» в соответствии с 10.5 и 10.6. Для частного дома со скатной крышей с уклоном кровли свыше 20° коэффициенты с е и с t равны единице, следовательно, формула снегового покрова:

    µ — коэффициент, который зависит от угла наклона крыши и определяется согласно приложению «Г» СП 20.13330.2011:

    • для кровель с углом наклона менее 30° µ = 1;
    • для кровель с углом наклона свыше 60° µ = 0;
    • в остальных случаях для угла наклона 30°<α<60° µ = 0,033 х (60°-α).

    Вес снегового покрова по районам можно уточнить в СП 20.13330.2011 «Нагрузки и воздействия», где также определяется номер района по карте приложения Ж.

    Вес снегового покрова S g

    Район I II III IV V
    S g кг/м 2 80 120 180 240 320

    Поскольку стропильная нога подвергается изгибу от воздействия на неё нагрузок, её проверяют на прочность как изгибаемого элемента, по формуле:

    М < m и R и W нт

    • М — изгибающий расчётный момент;
    • R и — расчётное сопротивление изгибу древесины;
    • m и — коэффициент, отражающий условия работы;
    • W нт — момент сопротивления данного сечения;
    • R и = 130 кг/см 2 — для сосны и ели;
    • m и равен 1,0 — для сечений высотой до 15 см и 1,15 — для сечений высотой более 15 см.

    В индивидуальном порядке рассчитывается момент сопротивления и момент инерции для материала стропил. По полученным данным подбирается требуемый размер конструктивных элементов стропил.

    Предложенный расчёт является примерным и требует дополнения в виде предельно допустимой длины опорных элементов, расстановки распорных или подпорных балок и стоек.

    Пример № 1

    Рассмотрим черепичную керамическую кровлю на двухскатной крыше в районе Москвы (III климатический район).

    Угол наклона 27°; cos α = 0,89; шаг стропил по оси — 1,3 м; расчётный пролёт стропил — 4,4 м. Обрешётка принимается из бруса 50х60 мм.

    Вес крыши на 1 м 2:

    • вес кровли — 45 кг;
    • вес стропильной ноги — 10 кг.

    Итого: g н = 62 кг/м 2

    • q = (1,1 х 62 х 0,89 + 1,4 х 126 х 0,89 2) х 1,3 = 260 кг/м.
    • q н = (62 х 0,89 + 126 х 0,89 2) х 1,3 = 201 кг/м
    • М = 0,125 х q х l 2 = 0,125 х 2,60 х 440 2 = 62 920 кг∙см

    Момент сопротивления:

    Момент инерции (I), который необходим из условия возможного прогиба f = 1/150 l; E = 100 000 кг/см 2 ; qн = 201 кг.

    По специально разработанным таблицам можно определить диаметр бревна для стропил.

    Диаметр бревна (см) в зависимости от W и J (для брёвен, стёсанных на один кант).

    Условные обозначения 13 14 15 16 17 18 19
    J 1359 1828 2409 3118 3974 4995 6201
    W 211 263 324 393 471 559 658

    Согласно приведённой таблице определяем диаметр бревна — 18 см.

    Пример № 2

    Возьмём все данные от предыдущего примера, но для кровли из ондулина. Необходимо рассчитать сечение стропильной ноги из бруса.

    Угол наклона 27°; cos α =0,89; шаг стропил по оси — 1,3 м; расчётный пролёт стропил — 4,4 м. Обрешётка принимается из бруса 50х60 мм.

    Вес крыши на 1 м 2:

    • вес кровли из ондулина — 3,4 кг;
    • обрешётка — 0,05 х 0,06 х 100 х 550/25 = 7 кг;
    • вес стропильной ноги — 10 кг.

    Итого: gн = 20,4 кг/м 2

    • q = (1,1 х 20,4 х 0,89 + 1,4 х 126 х 0,89 2) х 1,3 = 207,6 кг/м.
    • qн = (20,4 х 0,89 + 126 х 0,89 2) х 1,3 = 153,3 кг/м
    • М = 0,125 х q х l 2 = 0,125 х 2,08 х 440 2 = 50 336 кг∙см

    Момент сопротивления:

    Момент инерции (I), который необходим из условия возможного прогиба f = 1/150 l; E = 100 000 кг/см 2 ; qн = 153,3 кг.

    Принимаем брус высотой 15см. Для бруса высотой более 14 см Rи = 150 кг/см 2 . Поэтому:

    По таблице определяем размер сечения бруса для стропил.

    Ширина (b) и высота (h) бруса в зависимости от W и J.

    Условные обозначения
    8 9 10 11 12 13 14
    1829 2058 2287 2515 2744 2973 3201
    261 294 327 359 392 425 457
    2250 2531 2812 3094 3375 3656 3937
    300 337 375 412 450 487 525

    Принимаем для стропильной ноги брус сечением 10х15 см.

    Приведённые формулы можно использовать для расчёта других покрытий крыши. При этом рассчитывается нагрузка на стропильную ногу исходя их выбранного варианта. В формулах могут меняться:

    • длина стропил;
    • шаг стропил;
    • угол уклона крыши;
    • снеговая нагрузка, которую подбирают согласно региону строительства;
    • вес обрешётки.

    Сопряжение стропильных ног между собой и прогоном должно быть надёжным. Это обеспечивает отсутствие разрушающего распора на стены здания. Деревянные конструкции необходимо время от времени осматривать, поэтому при сооружении наслонных стропил расстояние от отметки верха чердачного перекрытия до нижней отметки мауэрлата принимается не менее 400 мм.

    Двускатные крыши и сегодня являются традицией частного домостроения. Правильное устройство крыши — это прочный, долговечный и красивый дом.


    Устройство крыши



    - Стропильная нога (стропила) – основной элемент стропильной системы. Изготавливают чаще всего из бруса шириной 50-100 мм, высотой 100-200 мм.
    - Мауэрлат – элемент стропильной системы, который укладывается на несущие стены и равномерно передает нагрузку от стропильных ног на стены. Сечение мауэрлата чаще всего 100х100, 100х150 либо 150х150 мм.
    - Прогон – элемент стропильной системы. Передает нагрузку стропильных ног на стойки, а также обеспечивает дополнительную жесткость стропильной системы. Сечение 100х100, 100х150 либо 100х200 мм.
    - Лежень – элемент стропильной системы. Функции лежня схожи с мауэрлатом (это перераспределение точечной нагрузки от стоек/стропильных ног в распределенную нагрузку на несущие стены). Разница в том, что на мауэрлат опираются стропильные ноги, а на лежень – стойки. Сечение 100х100, 100х150 либо 150х150 мм.
    - Стойка – вертикальный элемент стропильной системы, служащий для передачи нагрузки от стропильной ноги на лежень. Сечение 100х100, 100х150 мм.
    - Подкос – элемент стропильной системы, который служит для подпорки стропильной ноги и снятия с нее части нагрузки. Сечение 100х100, 100х150 мм.
    - Затяжка – горизонтальный элемент стропильной системы, служащий для восприятия распорной нагрузки от стропильных ног на несущие стены. Сечение 50х150 мм.
    - Обрешетка – элемент стропильной системы, предназначенный для передачи нагрузки кровли на стропильные ноги.
    - Кобылка – элемент стропильной системы, который используется как продолжение стропильной ноги и служит главным образом для экономии материала, либо просто при недостаточной длине стропильной ноги. Сечение 50х150 мм.

    Расчет размеров, определение угла наклона


    Основной задачей определения размеров является нахождение длины стропильной ноги. Длину стропильной ноги можно найти двумя вариантами:

    1. Когда у Вас есть пролет и угол наклона
    2. Когда у Вас есть пролет и высота конька



    Расчет по пролету и углу наклона:


    Длина стропильной ноги будет состоять из суммы двух длин:

    L= L1 + L2 = (В + С) / cos a


    где L1 = C / cos a
    L2 = B / cos a
    C – выступ стропильной ноги (см. рисунок)
    B – ширина пролета (см. рисунок)
    а – угол наклона в градусах (если у вас угол дан в промилях или процентах – можете перевести )


    Расчет по пролету и высоте конька:


    L= L1 + L2


    Где L2 = корень(B·B + H·H);
    L1 = C · L2 / B;

    Длина стропильной ноги L в обоих случаях будет максимально приближена в реальному размеру.


    Например: Ширина пролета B= 4250 мм, выступ С = 1000мм и угол наклона мы хотим 35 градусов.
    Пользуемся 1-ым вариантом расчета, когда известен пролет и угол наклона.
    Длина стропильной ноги L = L1 + L2 = 4250/cos35 + 1000/cos35 = 4250/0.819 + 1000/0.819 = 5189 + 1221 = 6410 мм


    Сбор нагрузок на стропильную систему


    На стропильную систему нужно собрать следующие нагрузки : от:
    - Вес кровельного материала
    - Вес обрешетки
    - Вес утеплителя
    - Собственный вес стропильной системы


    Для начала давайте узнаем грузовую площадь на стропильную ногу. Грузовая площадь – это площадь, с которой нагрузка действует на расчетную конструкцию (стропильную ногу).


    На рисунке показаны две грузовые площади (заштрихованы): на стропильную ногу №1 (F=L·D) и на стропильную ногу №2 (F=0,5·D·L). Логично, что площадь №2 в два раза меньше, чем площадь №1, а следовательно и стропильная нога №2 несет нагрузку в 2 раза меньше и сечение ее должно быть меньше, но с целью унифицирования конструкций стропильных ног, мы будем рассчитывать наиболее нагруженную и полученное сечение принимать для всех.


    Например: длина стропильной ноги (возьмем с предыдущего примера) L=6410 мм, а расстояние между ними 900 мм. Следовательно, грузовая площадь на наиболее нагруженную стропильную ногу будет равна:


    F=L·D = 6410 мм · 900 мм = 5 769 000 мм2 или 5,769 м2


    Снеговая нагрузка – это основная нагрузка, которая действует на стропильную систему.


    Искомая величина снеговой нагрузки равна


    S = μ·Sg


    Где μ – коэффициент, который зависит от уклона крыши
    Sg – нормативная снеговая нагрузка, кг/м2 (посмотреть можно )
    Здесь мы должны понимать следующее: чем больше уклон крыши, тем меньше снега на ней будет задерживаться.

    Если угол а ≤ 30 градусов , то μ=1
    - если угол 30 , то 0)
    - если угол а ≥ 60 градусов , то μ=0 (т.е. снег не будет задерживаться на крыше)


    Например: район строительства – г. Томск (снеговая нагрузка Sg=240 кг/м2), уклон крыши а=35 градусов.
    30

    μ=0,033·(60-а) =0,033·(60-35)=0,825


    И, тогда искомая величина снеговой нагрузки равна:

    S = μ·Sg = 0,825·240=198 кг/м2


    Ветровая нагрузка – немаловажная составляющая любого расчета. В зависимости от угла наклона крыши ветровая нагрузка действует по-разному. Если угол наклона меньше 30 градусов, то ветер огибает конек и создает завихрения, которые приподнимают крышу. Если же угол наклона больше 30 градусов, то ветер пытается опрокинуть крышу.



    Вдаваться во все детали аэродинамики мы не будем и облегчим расчет, не сильно отклоняясь от реального значения.
    Искомое значение ветрового давления:


    W = Wo·k·c


    Где Wo – нормативное значение ветрового давления (посмотреть можно )
    k – коэффициент, который учитывает изменение ветрового давления по высоте
    с – аэродинамический коэффициент (принимаем максимально возможное значение – 0.8)


    Коэффициент k можем наблюдать в таблице ниже.



    Например: район строительства – г. Томск (ветровая нагрузка Sg=53 кг/м2), строительство ведем вблизи лесного массива, высота нашего строения 7м (до конька).
    Подставляем значения в формулу и получаем следующее значение ветровой нагрузки:

    W = Wo·k·c = 53·0,65·0,8 = 27,56 кг/м2


    Постоянные нагрузки


    Для подсчета точных значений нагрузок делайте следующее: берите 1 м2 вашей грузовой площади и считайте массу всего, что туда попадает. Если же сложно подсчитать на 1м2 площади – возьмите всю площадь крыши целиком и посчитайте ту же массу стропильных ног и поделите на площадь.


    Например: сечение стропильной ноги 100х200 мм, материал сосна (плотность - 500кг/м3), ее длина 6410 мм, длина здания 9 метров, а шаг стропил 0,9м.
    Значит, количество стропильных ног будет 11шт. Масса одной стропильной ноги – 0,1м · 0,2м · 6,410м * 500кг/м3 = 64,1 кг.
    А масса всех будет равна 11шт · 64,1кг = 705,1 кг
    Площадь, на которую простираются все эти 10 стропильных ног:

    6,410 м · 9 м = 57,69м2


    Следовательно, нагрузка на 1м2 будет равна 705,1 кг / 57,69 м2 = 12,22 кг/м2

    Постоянные нагрузки будут собираться из следующих:
    1. Вес кровельного материала
    - Мягкая черепица – 12 кг/м2
    - Металлочерепица – 5 кг/м2
    - Натуральная черепица – 50 кг/м2
    - Шифер – 13 кг/м2
    - Битумные волнистые листы – 5,5 кг/м2
    - Профнастил – 5 кг/м2
    - Сланцевая кровля – 50 кг/м2
    - Фальцевая кровля – 6 кг/м2
    - Руберойд – 2 кг/м2
    2. Вес обрешетки 15-25 кг/м2
    3. Вес утеплителя/гидро-пароизоляции 10-20 кг/м2
    4. Собственный вес стропильной системы 10-20 кг/м2


    Например:
    1. Нагрузка от стропильной ноги – 12,22 кг/м2 (посчитано ранее)
    2. Нагрузка от утеплителя/гидро-пароизоляции - 13 кг/м2
    3. Нагрузка от обрешетки – 22 кг/м2
    4. Нагрузка от кровельного материала (профнастил) – 5 кг/м2

    ИТОГО: G = 12,22+13+22+5 = 52,22 кг/м2



    Коэффициенты надежности по нагрузке


    Все нагрузки, которые мы посчитали выше – это нормативные нагрузки.


    При подсчете нагрузок не бывает идеальных условий, поэтому чтобы обезопасить себя, каждая нормативная нагрузка умножается на коэффициент надежности по нагрузке и получается расчетная нагрузка, которую мы уже и будем использовать при расчете на прочность.


    Коэффициенты надежности по нагрузке согласно СНиП следует принимать следующими:


    Снеговая нагрузка – 1.4
    Ветровая нагрузка – 1.4


    Сочетание нагрузок


    Теперь, зная коэффициенты, давайте окончательно узнаем значение всех уже расчетных нагрузок.
    Снеговая нагрузка: S расч= 198 кг/м2 · 1,4 = 277,2 кг/м2
    Ветровая нагрузка: Wрасч = 27,56 кг/м2 · 1,4 = 38,58 кг/м2
    Постоянная нагрузка: Gрасч = 52,22кг/м2 · 1,1 = 57,44 кг/м2


    Уже для полного осведомления, расскажу, что просто получившиеся нагрузки суммировать не правильно – результат получится выше.


    Иногда на расчетную конструкцию действуют сразу много нагрузок. К примеру, постоянная нагрузка от конструкции, полезная нагрузка от нахождения людей, полезная нагрузка от мебели, снеговая нагрузка, ветровая нагрузка и прочие. Но шанс, что все их максимальные значения будут действовать одновременно, близится к нулю. Поэтому временные нагрузки распределяют еще на кратковременные и длительные, и вводят для них свои коэффициенты сочетания. Где-то 0,9, а где-то и 0,3. И при суммировании данных нагрузок, их просто умножают на эти коэффициенты.


    Но в нашем случае у нас не так много нагрузок, и мы их просуммируем без коэффициентов сочетаний (хуже не будет).


    u = 277.2 + 38.58 + 57.44 = 373,22 кг/м2


    Т.е. одна стропильная нога с грузовой площадью №1 равной 5,769 м2 (считали выше) будет нести нагрузку


    Q = 373,22 кг/м2 · 5,769 м2 = 2 153 кг


    А линейная распределенная нагрузка по длине стропильной ноги L=6,410м (считали выше) будет равна:


    q = 2 153 кг / 6,410 м = 335,88 кг/м



    Расчет стропильной системы


    Расчет на прочность стропильной ноги будет основываться на следующей формуле:


    M / W ≤ Rизг


    Где M – максимальный изгибающий момент
    W – момент сопротивления поперечного сечения изгибу
    Rизг – расчетное сопротивление изгибу (1-ый сорт древесины – 14 Мпа, 2-ой сорт– 13Мпа, 3-ий сорт – 8,5Мпа)


    Момент сопротивления прямоугольного сечения:



    W = b · h · h /6


    Где b – ширина сечения стропильной ноги
    h – высота сечения стропильной ноги


    Если задаться, что высота h в 1,5 раза больше чем ширина b


    W = b · (1.5 · b) · (1.5 · b) / 6 = 0.375·b·b·b
    M / 0.375·b·b·b ≤ Rизг
    b ≥ корень 3 степени (M / Rизг / 0,375)


    Если задаться, что высота h в 2 раза больше чем ширина b , то в итоге мы будем иметь следующую формулу.


    W = b · (2 · b) · (2 · b) / 6 = 0.667·b·b·b
    M / 0.667·b·b·b ≤ Rизг
    b ≥ корень 3 степени (M / Rизг / 0,667)


    Пример:

    Исходные данные – сосна 1 сорт, а геометрия и нагрузки такие же как в примерах выше.


    Максимальный изгибающий момент рассчитаем у нас на калькуляторе путем ввода значений, посчитанных выше либо по формуле M=q·L1·L1/8 (менее точная):


    L1 = 5189 мм – основной пролет
    L2 = 1221 мм – правая консоль


    Результатом будем иметь максимальный изгибающий момент M=1008,7 кг·м



    Переведем наш момент из кг*м в Н*мм.


    M = 1008.7 кг*м · 10 · 1000 = 10 087 000 Н*мм


    Зададимся отношением h/b=1,5, следовательно, формула прочности будет иметь следующий вид:


    b ≥ корень 3 степени (M / Rизг / 0,375)
    b ≥ корень 3 степени (10087000 / 14 / 0,375) ≥ 124,32мм

    Принимаем b = 125 мм, а высота h тогда будет 1,5·125=187,5 мм. Принимаем h =200 мм.


    Полученное сечение стропильной ноги – 125х200 мм

    Если задались бы отношением h/b=2, то получили бы следующее:


    b ≥ корень 3 степени (M / Rизг / 0,667)
    b ≥ корень 3 степени (10087000 / 14 / 0,667) ≥ 102,61 мм

    Принимаем b = 125 мм, а высота h тогда будет 2·125=250 мм. Принимаем h =250 мм.


    Полученное сечение стропильной ноги – 125х250 мм


    Заключение


    Итак, в г. Томск для крыши под углом 35 градусов с шагом стропил 900 мм из сосны I сорта, высотой до конька 7м с профнастилом в качестве кровельного материала подойдут стропила сечением 125х200 мм.



    P.S. данная статья писалась на протяжении нескольких дней и еще к ней будет сделан , поэтому автор будет очень благодарен, если Вы поделитесь данной статьей со своими друзьями и коллегами и напишете комментарий.

    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter

    ПОДЕЛИТЬСЯ: