Строительство, ремонт, дизайн

Здравствуйте. Предлагаю вниманию обзор интегрального линейного регулируемого стабилизатора напряжения (или тока) LM317 по цене 18 центов за штуку. В местном магазине такой стабилизатор стоит на порядок больше, поэтому меня и заинтересовал этот лот. Решил проверить, что продаётся по такой цене и оказалось, что стабилизатор вполне качественный, но об этом ниже.
В обзоре тестирование в режиме стабилизатора напряжения и тока, а также проверка защиты от перегрева.
Заинтересовавшихся прошу…

Немного теории:

Стабилизаторы бывают линейные и импульсные .
Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin - Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, то есть должен быть установлен на радиатор нужной площади.
Преимущество линейного стабилизатора - простота, отсутствие помех и небольшое количество используемых деталей.
Недостаток - низкий КПД, большое тепловыделение.
Импульсный стабилизатор напряжения - это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме, то есть бо́льшую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в режиме насыщения - с минимальным сопротивлением, а значит, может рассматриваться как ключ. Плавное изменение напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления им энергии и снижается по мере отдачи её в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить массогабаритные показатели, однако имеет свои особенности.
Преимущество импульсного стабилизатора - высокий КПД, низкое тепловыделение.
Недостаток - бОльшее количество элементов, наличие помех.

Герой обзора:

Лот состоит из 10 микросхем в корпусе ТО-220. Стабилизаторы пришли в полиэтиленовом пакете, обмотанным вспененным полиэтиленом.






Сравнение с наверно самым известным линейным стабилизатором 7805 на 5 вольт в таком же корпусе.

Тестирование:
Подобные стабилизаторы выпускаются многими производителями, вот .
Расположение ножек следующее:
1 - регулировка;
2 - выход;
3 - вход.
Собираем простейший стабилизатор напряжения по схеме из руководства:


Вот что удалось получить при 3 положениях переменного резистора:
Результаты, прямо скажем так, не очень. Стабилизатором это назвать язык не поворачивается.
Далее я нагрузил стабилизатор 25 Омным резистором и картина полностью преобразилась:

Далее я решил проверить зависимость выходного напряжения от тока нагрузки, для чего задал входное напряжения 15В, подстроечным резистором выставил выходное напряжение около 5В, и выход нагрузил переменным 100 Омным проволочным резистором. Вот что получилось:
Ток более 0,8А получить не удалось, т.к. начало падать входное напряжение (БП слабый). В результате этого тестирования, стабилизатор с радиатором нагрелся до 65 градусов:

Для проверки работы стабилизатора тока, была собрана следующая схема:


Вместо переменного резистора я использовал постоянный, вот результаты тестирования:
Стабилизация по току тоже хорошая.
Ну и как обзор может быть без сжигания героя? Для этого я собрал снова стабилизатор напряжения, на вход подал 15В, выход настроил на 5В, т.е. на стабилизаторе упало 10В, и нагрузил на 0,8А, т.е. на стабилизаторе выделялось 8Вт мощности. Радиатор убрал.
Результат продемонстрировал на следующем видео:


Да, защита от перегрева тоже работает, сжечь стабилизатор не удалось.

Итог:

Стабилизатор вполне работоспособен и может быть использован как стабилизатор напряжения (при условии наличия нагрузки), так и стабилизатор тока. Также есть множество различных схем применения для увеличения выходной мощности, использования в качестве зарядного устройства для аккумуляторов и др. Стоимость сабжа вполне приемлемая, учитывая, что в оффлайне я могу купить такой минимум за 30 рублей, а в за 19 рублей, что существенно дороже обозреваемого.

На сём разрешите откланяться, удачи!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +37 Добавить в избранное Обзор понравился +59 +88

LM317 - это недорогая микросхема стабилизатор напряжения со встроенной защитой от короткого замыкания на выходе и от перегрева, на LM317 может быть изготовлен простой в сборке линейный стабилизатор постоянного напряжения которое м.б. регулируемым. Такие микросхемы бывают в разных корпусах например в ТО-220 или в ТО-92. Если корпус ТО-92 то последние две буквы названия будут LZ т.е. так: LM317LZ, цоколёвки этой микросхемы в разных корпусах различаются поэтому нужно быть внимательнее, также существуют такие микросхемы в smd корпусах. Заказать LM317LZ оптом небольшой партией можно по ссылке: LM317LZ (10шт.) , LM317T по ссылке: LM317T (10шт.) . Рассмотрим схему стабилизатора:

Рисунок 1 - Стабилизатор постоянного напряжения на микросхеме LM317LZ


Данный стабилизатор помимо микросхемы содержит ещё 4 детали, резистором R2 регулируется напряжение на выходе стабилизатора. Для простоты сборки можно воспользоваться схемой:

Рисунок 2 - Стабилизатор постоянного напряжения на микросхеме LM317LZ


Все стабилизаторы постоянного напряжения делятся на 2 типа это:
1) линейные (как например в нашем случае т.е. на LM317),
2) импульсные (с большими КПД и для более мощных нагрузок).
Принцип работы линейных (не всех) стабилизаторов можно понять из рисунка:

Рисунок 3 - Принцип работы линейного стабилизатора


Из рисунка 3 видно то что такой стабилизатор представляет собой делитель нижним плечом которого является нагрузка а верхним сама микросхема. Напряжение на входе меняется и микросхема изменяет своё сопротивление так чтобы на выходе напряжение было неизменным. Такие стабилизаторы обладают низким КПД т.к. часть энергии теряется на микросхеме. Импульсные стабилизаторы тоже представляют собой делитель только у них верхнее (или нижнее) плечо может либо иметь очень низкое сопротивление (открытый ключ) либо очень высокое (закрытый ключ), чередованием таких состояний создаётся ШИМ с высокой частотой а на нагрузке напряжение сглаживается конденсатором (и/или ток сглаживается дросселем), таким образом создаётся высокое КПД но из за высокой частоты ШИМа импульсные стабилизаторы создают электромагнитные помехи. Существуют также линейные стабилизаторы в которых элемент осуществляющий стабилизацию ставиться параллельно нагрузке - в таких случаях этим элементом обычно является стабилитрон и для того чтобы осуществлялась стабилизация на это параллельное соединение подаётся ток от источника тока, источник тока делается путём установки последовательно с источником напряжения резистора с большим сопротивлением, если напряжение подавать на такой стабилизатор непосредственно то стабилизации не будет а стабилитрон скорее всего перегорит.

Vin (входное напряжение): 3-40 Вольт
Vout (выходное напряжение): 1,25-37 Вольт
Выходной ток: до 1,5 Ампер
Максимальная рассеиваемая мощность: 20 Ватт
Формула для расчета выходного (Vout) напряжения: Vout = 1,25 * (1 + R2/R1)
*Сопротивления в Омах
*Значения напряжения получаем в Вольтах

Данная простая схема позволяет выпрямить переменное напряжение в постоянное благодаря диодному мосту из диодов VD1-VD4, а затем точным подстрочным резистором типа СП-3 выставить нужное вам напряжение в пределах допустимых интегральной микросхемы-стабилизатора.

В качестве выпрямительных диодов взял старые FR3002 , которые когда-то давно выпаял из древнейшего компьютера 98-го года. При внушительных размерах (корпус DO-201AD) их характеристики (Uобратное: 100 Вольт; Iпрямой: 3 Ампера) не впечатляют, но мне и этого хватает с головой. Для них даже пришлось расширять отверстия в плате, уж больно выводы у них толстые (1,3мм). Если немного изменить плату в лейоте можно впаять сразу готовый диодный мост.

Радиатор для отведения тепла от микросхемы 317 обязателен, даже лучше небольшой вентилятор поставить. Еще, в месте соединения подложки корпуса TO-220 микросхемы с радиатором капните немного термопасты. Степень нагрева будет зависеть от того, сколько мощности рассеивает микросхема, а также от самой нагрузки.

Микросхему LM317T я не устанавливал прямо на плату, а вывел от неё три провода, с помощью которых и соединил этот компонент с остальными. Это было сделано для того, чтобы ножки не расшатывались и вследствие чего не были переломанными, ведь данная деталь будет прикреплена к рассеивателю тепла.

Подстрочный резистор для возможности использования полного вольтажа микросхемы, то есть регулировки от 1,25 и аж до 37 Вольт устанавливаем с максимальным сопротивлением 3432 кОма (в магазине самый близкий номинал 3,3кОм.). Рекомендуемый тип резистора R2: подстрочный многооборотный (3296).

Саму микросхему-стабилизатор LM317T и подобные ей выпускает множество, если не все компании по производству электронных компонентов. Покупайте только у проверенных продавцов, потому что встречаются китайские подделки, особенно часто микросхемы LM317HV, которая рассчитана на входное напряжение аж до 57 Вольт. Опознать ненастоящую микросхему можно по железной подложке, в фейке она имеет множество царапин и неприятный серый цвет, также неправильную маркировку. Еще нужно сказать, что микросхема имеет защиту от короткого замыкания, а также перегрева, но на них сильно не рассчитывайте.

Не забываем, что данный (LM317Т) интегральный стабилизатор способен рассеивать мощность с радиатором только до 20 Ватт. Плюсами этой распространённой микросхемы являются её маленькая цена, ограничение внутреннего тока короткого замыкания, внутренняя тепловая защита

Платку можно нарисовать качественно даже обычным пергаментным маркером, а потом вытравить в растворе медного купороса/хлорного железа…

Фото готовой платы.

Регулируемый трехвыводной стабилизатор тока LM317 обеспечивает нагрузку в 100 мА. Диапазон выходного напряжения составляет от 1,2 до 37 В. Прибор очень удобен в применении и требует только пару наружных резисторов, обеспечивающих выходное напряжение. Плюс к этому, нестабильность по рабочим показателям имеет лучшие параметры, чем у аналогичных моделей с фиксированной подачей напряжения на выходе.

Описание

LM317 - стабилизатор тока и напряжения, который функционирует даже при отсоединенном управляющем выводе ADJ. При нормальной работе прибор не нуждается в подключении к дополнительным конденсаторам. Исключение составляет ситуация, когда устройство находится на значительном расстоянии от первичного фильтрующего питания. В этом случае потребуется монтаж входного шунтирующего конденсатора.

Выходной аналог позволяет улучшить показатели стабилизатора тока LM317. В итоге повышается интенсивность переходных процессов и значение коэффициента сглаживания пульсаций. Такой оптимальный показатель трудно достичь в других трехвыводных аналогах.

Предназначение рассматриваемого прибора заключается не только в замене стабилизаторов с фиксированным выходным показателем, но и для широкого спектра применения. Например, стабилизатор тока LM317 может использоваться в схемах с высоковольтным питанием. При этом индивидуальная система устройства влияет на разность между входным и выходным напряжением. Функционирование прибора в таком режиме может продолжаться неопределенный срок, пока разность между двумя показателями (входным и выходным напряжением) не превысит предельно допустимой точки.

Особенности

Стоит отметить, что стабилизатор тока LM317 удобен для создания простых регулируемых импульсных приборов. Они могут применяться в качестве прецизионного стабилизатора, посредством подсоединения постоянного резистора между двумя выходами.

Создание вторичных питающих источников, работающих при недлительных коротких замыканиях, стало возможным благодаря оптимизации показателя напряжения на управляющем выводе системы. Программа удерживает его на входе в пределах 1,2 вольта, что для большинства нагрузок очень мало. Стабилизатор тока и напряжения LM317 изготавливается в стандартном транзисторном остове ТО-92, режим рабочих температур составляет от -25 до +125 градусов по Цельсию.

Характеристики

Рассматриваемый прибор отлично подходит для проектирования простых регулируемых блоков и источников питания. При этом параметры могут быть корректируемыми и заданными в плане нагрузки.

Регулируемый стабилизатор тока на LM317 обладает следующими техническими характеристиками:

  • Диапазон выходного напряжения - от 1,2 до 37 вольт.
  • Нагрузочный ток по максимуму - 1,5 А.
  • Имеется защита от возможного короткого замыкания.
  • Предусмотрены предохранители схемы от перегрева.
  • Погрешность напряжения на выходе составляет не более 0,1%.
  • Корпус интегральной микросхемы - типа ТО-220, ТО-3 или D2PAK.

Схема стабилизатора тока на LM317

Максимально часто рассматриваемое устройство используется в источниках питания светодиодов. Далее представлена простейшая схема, в которой задействован резистор и микросхема.

На входе поставляется напряжение источника питания, а главный контакт соединяется с выходным аналогом при помощи резистора. Далее происходит агрегация с анодом светодиода. В самой популярной схеме стабилизатора тока LM317, описание которого приведено выше, используется следующая формула: R = 1/25/I. Здесь I - это выходной ток устройства, его диапазон варьируется в пределах 0, 01-1.5 А. Сопротивление резистора допускается в размерах 0, 8-120 Ом. Рассеиваемая резистором мощность вычисляется по формуле: R = IxR (2).

Полученная информация округляется в большую сторону. Постоянные резисторы выпускаются с малым разбросом окончательного сопротивления. Это влияет на получение расчетных показателей. Чтобы урегулировать данную проблему, в схему подключают дополнительный стабилизирующий резистор необходимой мощности.

Плюсы и минусы

Как показывает практика, при эксплуатации лучше увеличить по площади рассеивания на 30 %, а в отсеке низкой конвекции - на 50 %. Кроме ряда преимуществ, стабилизатор тока светодиода LM317 имеет несколько минусов. Среди них:

  • Небольшой коэффициент полезного действия.
  • Необходимость отвода тепла от системы.
  • Стабилизация тока свыше 20 % от предельного значения.

Избежать проблем в эксплуатации прибора поможет применение импульсных стабилизаторов.

Стоит отметить, что если нужно подключить мощный светодиодный элемент мощностью 700 миллиампер, потребуется рассчитать значения по формуле: R = 1, 25/0, 7 = 1.78 Ом. Рассеиваемая мощность соответственно составит 0, 88 Ватт.

Подключение

Расчет стабилизатора тока LM317 базируется на нескольких способах подключения. Ниже приведены основные схемы:

  1. Если использовать мощный транзистор типа Q1, можно без радиатора микросборки получить на выходе ток 100 мА. Этого вполне хватает для управления транзистором. В качестве подстраховки от излишнего заряда используются защитные диоды D1 и D2, а параллельный электролитический конденсатор выполняет функцию по снижению посторонних шумов. При использовании транзистора Q1, предельная выходная мощность прибора составит 125 Вт.
  2. В другой схеме обеспечивается ограничение подачи тока и стабильная работа светодиода. Специальный драйвер позволяет запитать элементы мощностью от 0, 2 ватт до 25 вольт.
  3. В очередной конструкции применяется трансформатор понижения напряжения из переменной сети от 220 Вт до 25 Вт. При помощи диодного мостика переменное напряжение трансформируется в постоянный показатель. При этом все перебои сглаживаются за счет конденсатора типа С1, что обеспечивает поддержание стабильной работы регулятора напряжения.
  4. Следующая схема подключения считается одной из самых простых. Напряжение поступает с вторичной обмотки трансформатора на 24 вольта, выпрямляется при проходе через фильтр, и на выдаче получается постоянный показатель 80 вольт. Это позволяет избежать превышения максимального порога подачи напряжения.

Стоит отметить, что простое зарядное устройство также можно собрать на базе микросхемы рассматриваемого прибора. Получится стандартный линейный стабилизатор с регулируемым показателем выходного напряжения. В аналогичной роли может функционировать микросборка устройства.

Аналоги

Мощный стабилизатор на LM317 имеет ряд аналогов на отечественном и зарубежном рынке. Самыми известными из них являются следующие марки:

  • Отечественные модификации КР142 ЕН12 и КР115 ЕН1.
  • Модель GL317.
  • Вариации SG31 и SG317.
  • UC317T.
  • ECG1900.
  • SP900.
  • LM31MDT.

В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.

Datasheet по lm317, lm350, lm338

Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).

Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.

LM317 LM350 LM338
Диапазон значений регулируемого выходного напряжения 1,2…37В 1,2…33В 1,2…33В
Максимальный показатель токовой нагрузки 1,5А
Максимальное допустимое входное напряжение 40В 35В 35В
Показатель возможной погрешности стабилизации ~0,1% ~0,1% ~0,1%
Максимальная рассеиваемая мощность* 15-20 Вт 20-50 Вт 25-50 Вт
Диапазон рабочих температур 0° - 125°С 0° - 125°С 0° - 125°С
Datasheet LM317.pdf LM350.pdf LM338.pdf

* - зависит от производителя ИМ.

Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:

  1. ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
  2. OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
  3. INPUT. Вывод для подачи напряжения питания.

Схемы и расчеты

Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора.
На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.

Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I 0 (1), где I 0 – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: P R =I 0 2 ×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.

Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.

Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности.
Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.

Онлайн калькулятор lm317, lm350 и lm338

Требуемое выходное напряжение (В):

Номинал R1 (Ом): 240 330 470 510 680 750 820 910 1000

Дополнительно

Ток нагрузки (А):

Входное напряжение (В):

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: