Строительство, ремонт, дизайн

Продолжение статьи о начале занятий электроникой. Для тех, кто решился начать. Рассказ о деталях.

Радиолюбительство до сих пор является одним из самых распространенных увлечений, хобби. Если в начале своего славного пути радиолюбительство затрагивало в основном конструирование приемников и передатчиков, то с развитием электронной техники расширялся диапазон электронных устройств и круг радиолюбительских интересов.

Конечно, такие сложные устройства, как, например, видеомагнитофон, проигрыватель компакт-дисков, телевизор или домашний кинотеатр у себя дома собирать не станет даже самый квалифицированный радиолюбитель. А вот ремонтом техники промышленного производства занимаются очень многие радиолюбители, причем достаточно успешно.

Другим направлением является конструирование электронных схем или доработка «до класса люкс» промышленных устройств.

Диапазон в этом случае достаточно велик. Это устройства для создания «умного дома», преобразователи 12…220В для питания телевизоров или звуковоспроизводящих устройств от автомобильного аккумулятора, различные терморегуляторы. Также очень популярны , а также многое другое.

Передатчики и приемники отошли на последний план, а вся техника называется теперь просто электроникой. И теперь, пожалуй, следовало бы называть радиолюбителей как-то иначе. Но исторически сложилось так, что другого названия просто не придумали. Поэтому пусть будут радиолюбители.

Компоненты электронных схем

При всем разнообразии электронных устройств они состоят из радиодеталей. Все компоненты электронных схем можно разделить на два класса: активные и пассивные элементы.

Активными считаются радиодетали, которые обладают свойством усиливать электрические сигналы, т.е. обладающие коэффициентом усиления. Нетрудно догадаться, что это транзисторы и все, что из них делается: операционные усилители, логические микросхемы, и многое другое.

Одним словом все те элементы, у которых маломощный входной сигнал управляет достаточно мощным выходным. В таких случаях говорят, что коэффициент усиления (Кус) у них больше единицы.

К пассивным относятся такие детали, как резисторы, и т.п. Одним словом все те радиоэлементы, которые имеют Кус в пределах 0…1! Единицу тоже можно считать усилением: «Однако, не ослабляет». Вот сначала и рассмотрим пассивные элементы.

Резисторы

Являются самыми простыми пассивными элементами. Основное их назначение ограничить ток в электрической цепи. Простейшим примером является включение светодиода, показанное на рисунке 1. С помощью резисторов также подбирается режим работы усилительных каскадов при различных .

Рисунок 1. Схемы включения свтодиода

Свойства резисторов

Раньше резисторы назывались сопротивлениями, это как раз их физическое свойство. Чтобы не путать деталь с ее свойством сопротивления переименовали в резисторы .

Сопротивление, как свойство присуще всем проводникам, и характеризуется удельным сопротивлением и линейными размерами проводника. Ну, примерно так же, как в механике удельный вес и объем.

Формула для подсчета сопротивления проводника: R = ρ*L/S, где ρ удельное сопротивление материала, L длина в метрах, S площадь сечения в мм2. Нетрудно увидеть, что чем длиннее и тоньше провод, тем больше сопротивление.

Можно подумать, что сопротивление не лучшее свойство проводников, ну просто препятствует прохождению тока. Но в ряде случаев как раз это препятствие является полезным. Дело в том, что при прохождении тока через проводник на нем выделяется тепловая мощность P = I 2 * R. Здесь P, I, R соответственно мощность, ток и сопротивление. Эта мощность используется в различных нагревательных приборах и лампах накаливания.

Резисторы на схемах

Все детали на электрических схемах показываются с помощью УГО (условных графических обозначений). УГО резисторов показаны на рисунке 2.

Рисунок 2. УГО резисторов

Черточки внутри УГО обозначают мощность рассеяния резистора. Сразу следует сказать, что если мощность будет меньше требуемой, то резистор будет греться, и, в конце концов, сгорит. Для подсчета мощности обычно пользуются формулой, а точнее даже тремя: P = U * I, P = I 2 * R, P = U 2 / R.

Первая формула говорит о том, что мощность, выделяемая на участке электрической цепи, прямо пропорциональна произведению падения напряжения на этом участке на ток через этот участок. Если напряжение выражено в Вольтах, ток в Амперах, то мощность получится в ваттах. Таковы требования системы СИ.

Рядом с УГО указывается номинальное значение сопротивления резистора и его порядковый номер на схеме: R1 1, R2 1К, R3 1,2К, R4 1К2, R5 5М1. R1 имеет номинальное сопротивление 1Ом, R2 1КОм, R3 и R4 1,2КОм (буква К или М может ставиться вместо запятой), R5 - 5,1МОм.

Современная маркировка резисторов

В настоящее время маркировка резисторов производится с помощью цветных полос. Самое интересное, что цветовая маркировка упоминалась в первом послевоенном журнале «Радио», вышедшем в январе 1946 года. Там же было сказано, что вот, это новая американская маркировка. Таблица, объясняющая принцип «полосатой» маркировки показана на рисунке 3.

Рисунок 3. Маркировка резисторов

На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также называют «чип - резистор». Для любительских целей наиболее подходят резисторы типоразмера 1206. Они достаточно крупные и имеют приличную мощность, целых 0,25Вт.

На этом же рисунке указано, что максимальным напряжением для чип резисторов является 200В. Такой же максимум имеют и резисторы для обычного монтажа. Поэтому, когда предвидится напряжение, например 500В лучше поставить два резистора, соединенных последовательно.

Рисунок 4. Резисторы для поверхностного монтажа SMD

Чип резисторы самых маленьких размеров выпускаются без маркировки, поскольку ее просто некуда поставить. Начиная с размера 0805 на «спине» резистора ставится маркировка из трех цифр. Первые две представляют собой номинал, а третья множитель, в виде показателя степени числа 10. Поэтому если написано, например, 100, то это будет 10 * 1Ом = 10Ом, поскольку любое число в нулевой степени равно единице первые две цифры надо умножать именно на единицу.

Если же на резисторе написано 103, то получится 10 * 1000 = 10 КОм, а надпись 474 гласит, что перед нами резистор 47 * 10 000 Ом = 470 КОм. Чип резисторы с допуском 1% маркируются сочетанием букв и цифр, и определить номинал можно лишь пользуясь таблицей, которую можно отыскать в интернете.

В зависимости от допуска на сопротивление номиналы резисторов разделяются на три ряда, E6, E12, E24. Значения номиналов соответствуют цифрам таблицы, показанной на рисунке 5.

Рисунок 5.

Из таблицы видно, что чем меньше допуск на сопротивление, тем больше номиналов в соответствующем ряду. Если ряд E6 имеет допуск 20%, то в нем всего лишь 6 номиналов, в то время как ряд E24 имеет 24 позиции. Но это все резисторы общего применения. Существуют резисторы с допуском в один процент и меньше, поэтому среди них возможно найти любой номинал.

Кроме мощности и номинального сопротивления резисторы имеют еще несколько параметров, но о них пока говорить не будем.

Соединение резисторов

Несмотря на то, что номиналов резисторов достаточно много, иногда приходится их соединять, чтобы получить требуемую величину. Причин этому несколько: точный подбор при настройке схемы или просто отсутствие нужного номинала. В основном используется две схемы соединения резисторов: последовательное и параллельное. Схемы соединения показаны на рисунке 6. Там же приводятся и формулы для расчета общего сопротивления.

Рисунок 6. Схемы соединения резисторов и формулы для расчетов общего сопротивления

В случае последовательного соединения общее сопротивление равно просто сумме двух сопротивлений. Это как показано на рисунке. На самом деле резисторов может быть и больше. Такое включение бывает в . Естественно, что общее сопротивление будет больше самого большего. Если это будут 1КОм и 10Ом, то общее сопротивление получится 1,01КОм.

При параллельном соединении все как раз наоборот: общее сопротивление двух (и более резисторов) будет меньше меньшего. Если оба резистора имеют одинаковый номинал, то общее их сопротивление будет равно половине этого номинала. Можно так соединить и десяток резисторов, тогда общее сопротивление будет как раз десятая часть от номинала. Например, соединили в параллель десять резисторов по 100 ОМ, тогда общее сопротивление 100 / 10 = 10 Ом.

Следует отметить, что ток при параллельном соединении согласно закону Кирхгофа разделится на десять резисторов. Поэтому мощность каждого из них потребуется в десять раз ниже, чем для одного резистора.

Продолжение читайте в следующей статье.

Переменный резистор (реостат) — электрический аппарат, изобретённый Иоганном Христианом Поггендорфом, служащий для регулировки и получения требуемой величины сопротивления… Ну и бла-бла-бла… В двух словах, речь пойдет о том как, из подстроечного многооборотного резистора сделать полноценный переменный с возможностью крепления на панели прибора.

В радиолюбительской природе существует три типа переменных резисторов — однооборотные, многооборотные и ползунковые. О ползунковых здесь больше не будет сказано ни слова. Как понятно из определения первые могут вращаться всего на один оборот, если точнее где-то на 270°, то вторые на величину более 1-го оборота. Однооборотные резисторы применяют там, где не особо критична величина сопротивления от положения вала резистора, многооборотные естественно там, где критично. Посмотрим примеры.

Пример 1. «Классический» регулируемый источник напряжения на LM317. Диапазон регулировки примем 1,25 — 12 В. Угол отклонения вала резистора от нулевого сопротивления до максимального — 270°, это величина примерная, точная величина указана в справочном листе на конкретный резистор. Так же примем, что напряжение на выходе источника питания будет изменятся по линейному закону в зависимости от сопротивления нашего подопытного, F(y)=x. Наш диапазон выходного напряжения, 10,75 В, разделим на угол отклонения 270° и получим примерно 0,04 В на 1° поворота резистора. Этого достаточно для точной установки выходного напряжения с шагом 0,1 В. Вывод: нас устроит однооборотный резистор.

Пример 2. Аналого- цифровое преобразование (АЦП) на микроконтроллере (МК). Примем, что переменный резистор работает как делитель напряжения, МК преобразовывает входящее в него напряжение в цифровую информацию величиною 10 бит, а что бы было понятнее, преобразовывает напряжение в диапазоне, пусть будет, 0 — 5 В в числовое значение 0 — 1023. Проведем расчет как в примере 1. Разделим количество наших значений АЦП 1024 (0 в цифровом мире всегда учитывается, поэтому значений у нас 1024) на 270°. Получили примерно 3,8. То есть, при повороте вала резистора на 1° значение АЦП изменяется почти на 4 значения! Вся ваша точность 10 битного АЦП сводится на НЕТ. Вот тут и делаем вывод, что однооборотный переменный резистор нам не подходит. А возьмем, к примеру, резистор на 10 оборотов и посмотрим. 10 оборотов — это 3600°, делим 1024 на 3600 и получаем 0,28. То есть, при повороте вала резистора на 1° значение АЦП изменится на 0,28 (для справки, значение АЦП всегда целая величина и никаких сотых и десятых некогда не будет, это только для примера). Для изменения значения АЦП на одну единицу необходимо повернуть вал на 3,5°.

Я думаю, что из выше приведенных примеров понятно, какой резистор необходимо применять в сложившейся ситуации. Если с цифрами все ясно, то слова АЦП и LM317 можете спросить у дяди google.

Существует еще одна классификация резисторов с изменяемыми параметрами: собственно переменный и подстроечный. Сразу оговорюсь, что в дальнейшем в этой статье я буду рассматривать многооборотный резистор. Так вот, подстроечный резистор маленький и устанавливается, в большинстве случаев, на плату. Настройка производится отверткой и при нормальной эксплуатации прибора его никто не трогает.

На картинке выше показан самый распространенный многооборотный подстроечник. Его цена составляет примерно 0,3$. А вот чистокровные переменные резисторы отличаются габаритами, имеют крепеж для монтажа на панель и в большинстве случаев соединяются с платой проводами.

У таких резисторов, по сравнению с подстроечными, больше мощность, ресурс и есть возможность установки ручки-крутилки. А цена составляет примерно 2,8$. Для постоянного изменения параметров необходимо использовать именно переменный резистор. Но если его не оказалось под рукой, смущает цена, да и не часто то я его крутить буду… Можно сделать из подстроечного переменный.

Найденные в интернете такие самоделки меня не впечатлили. А припаяться к латунному валу подстроечника меня совсем убило, так можно и со старту ресурс к нулю свести. Решил сделать по-своему. За основу взял небольшой однооборотный переменник отечественного производства:

Разобрал его:

Мне очень повезло, вал и ползунок не склепаны между собой. Из всего этого мне понадобится только крепежный фланец с резьбой и валом. Сперва спиливаем у фланца лишнее, делаем две параллельные грани:

Хвостовик вала необходимо немного сточить и параллельно расширять шлиц в подстроечнике. Подгоняем одно к другому, что бы вал заходил в шлиц без подклинивания. «Корпус» нового резистора изготавливаем из полоски жести. Одеваем полоску на фланец, сперва просверлив в ней отверстие, а потом закручиваем гайку и загибаем торчащие лепестки. Находим положение соосности подстроечника с валом и подкладываем кусочки жести в нужных местах. Сверлим два отверстия для установки винтов, которые будут стягивать боковины, тем самым удерживать подстроечник на своем месте. Должно получится так.

Чаще всего встречаются неисправности резисторов, связанные с выгоранием токопроводящего слоя или нарушением контакта между ним и хомутиком. Для всех случаев дефектов существует простой тест. Разберемся, как проверить резистор мультиметром.

Типы мультиметров

Прибор бывает стрелочным или цифровым. Для первого не требуется источник питания. Он работает как микроамперметр с переключением шунтов и делителей напряжения в заданные режимы измерений.

Цифровой мультиметр показывает на экране результаты сравнения разницы между эталонными и измеряемыми параметрами. Для него нужен влияющий на точность измерений по мере разрядки. С его помощью производится тестирование радиодеталей.

Виды неисправностей

Резистором называют электронный компонент с определенным или переменным значением электрического сопротивления. Перед тем как проверить резистор мультиметром, его осматривают, визуально проверяя исправность. Прежде всего определяется целостность корпуса по отсутствию на поверхности трещин и сколов. Выводы должны быть надежно закреплены.

Неисправный резистор часто имеет полностью обгоревшую поверхность или частично - в виде колечек. Если покрытие немного потемнело, это еще не характеризует наличие неисправности, а говорит лишь о его нагреве, когда выделяемая на элементе мощность в какой-то момент превысила величину допустимой.

Деталь может выглядеть как новая, даже если внутри оборвется контакт. У многих здесь возникают проблемы. Как проверить резистор мультиметром в данном случае? Необходимо наличие принципиальной схемы, по которой производятся замеры напряжения в определенных точках. Для облегчения поиска неисправностей в электрических цепях бытовой техники выделяются контрольные точки с указанием на них величины этого параметра.

Проверка резисторов производится в самую последнюю очередь, когда нет сомнений в следующем:

  • полупроводниковые детали и конденсаторы исправны;
  • на печатных платах нет сгоревших дорожек;
  • отсутствуют обрывы в соединительных проводах;
  • соединения разъемов надежны.

Все вышеперечисленные дефекты появляются со значительно большей вероятностью, чем выход из строя резистора.

Характеристики резисторов

Величины сопротивлений стандартизованы в ряды и не могут принимать любые значения. Для них задаются допустимые отклонения от номинала, зависимые от точности изготовления, температуры среды и других факторов. Чем дешевле резистор, тем больше допуск. Если при измерении величина сопротивления выходит за его пределы, элемент считается неисправным.

Еще одним важным параметром является мощность резистора. Одной из причин преждевременного выхода детали из строя является ее неправильный выбор по этому параметру. Мощность измеряется в ваттах. Ее выбирают такой, на которую он рассчитан. На схеме условного обозначения мощность резистора определяется по знакам:

  • 0,125 Вт - двойная косая черта;
  • 0,5 Вт - прямая продольная черта;
  • римская цифра - величина мощности, Вт.

Резистор для замены выбирается по тем же параметрам, что и неисправный.

Проверка резисторов на соответствие номиналам

Для проверки необходимо найти значения сопротивлений. Их можно увидеть по порядковому номеру элемента на схеме или в спецификации.

Измерение сопротивления является самым распространенным способом проверки резистора. В данном случае определяется соответствие номиналу и допуску.

Величина сопротивления должна быть в пределах диапазона, который на мультиметре устанавливается переключателем. Щупы подключаются к гнездам COM и VΩmA. Перед тем как проверить резистор тестером, сначала определяется исправность его проводов. Их замыкают между собой, и прибор должен показать величину сопротивления, равную нулю или немного больше. При измерениях малых сопротивлений эта величина вычитается из показаний прибора.

Если энергии элементов питания недостаточно, обычно получается сопротивление, отличное от нуля. В этом случае следует заменить батарейки, поскольку точность измерений будет низкой.

Новички, не зная, как проверить резистор на работоспособность мультиметром, часто касаются руками щупов прибора. Когда измеряются величины в килоомах, это недопустимо, поскольку получаются искаженные результаты. Здесь следует знать, что тело также имеет определенное сопротивление.

При фиксации прибором величины сопротивления, равной бесконечности, это является показателем наличия обрыва (на экране горит "1"). Редко встречается наличие пробоя резистора, когда его сопротивление равно нулю.

После измерения полученное значение сравнивается с номиналом. При этом учитывается допуск. Если данные совпадают, резистор исправен.

Когда появляются сомнения в правильности показаний прибора, следует замерить величину сопротивления исправного резистора с тем же номиналом и сравнить показания.

Как измерить сопротивление, когда номинал неизвестен?

Установка максимального порога при измерении сопротивления не обязательна. В режиме омметра можно установить любой диапазон. Мультиметр из-за этого не выйдет из строя. Если прибор покажет "1", что означает бесконечность, порог следует увеличивать, пока на экране не появится результат.

Функция прозвонки

А еще как проверить резистор мультиметром на исправность? Распространенным способом является прозвонка. Положение переключателя для данного режима обозначается значком диода с сигналом. Знак сигнала может быть отдельно, верхняя граница срабатывания его не превышает 50-70 Ом. Поэтому резисторы, номиналы которых превышают порог, прозванивать не имеет смысла. Сигнал будет слабым, и его можно не услышать.

При значениях сопротивления цепи ниже граничного значения прибор издает писк через встроенный динамик. Прозвонка делается путем создания напряжения между точками схемы, выбранными с помощью щупов. Чтобы данный режим работал, нужны подходящие источники питания.

Проверка исправности резистора на плате

Сопротивление замеряют, когда элемент не подключен к остальным в схеме. Для этого нужно освободить одну из ножек. Как проверить резистор мультиметром, не выпаивая из схемы? Это делается только в особых случаях. Здесь необходимо проанализировать схему подключений на наличие шунтирующих цепей. Особенно на показания прибора влияют полупроводниковые детали.

Заключение

Решая вопрос, как проверить резистор мультиметром, необходимо разобраться, как измеряется электрическое сопротивление и какие пределы устанавливаются. Прибор предназначен для ручного применения и следует запомнить все приемы использования щупов и переключателя.

Принципиальная схема простого электронного потенциометра, или как заменить переменный резистор с ручкой на две кнопки для регулировки в разных схемах и устройствах. В устройстве использованы полевые транзисторы КП304 или КП301.

Иногда бывает что нужно переделать какой-то регулятор на основе переменных резисторов с вращающимися ручками под цифровое кнопочное управление. Решение такой задачи может быть на основе микроконтроллера, с применением цифровых микросхемам и т.п.

В данной статье описывается простое решение, которое позволит заменить переменный резистор на небольшую схемку с двумя кнопками: "БОЛЬШЕ", "МЕНЬШЕ".

В журнале Радио за 1987 год №11 был описан несложный темброблок на микросхеме, особенностью его было электронное управление тембром при помощи кнопок.

Принципиальная схема

Схема построена на основе полевого транзистора и конденсатора. При помощи кнопок мы управляем степенью заряда конденсатора, напряжение на котором управляет полевым транзистором.

Рис. 1. Схема замены переменного резистора двумя кнопками.

Недостаток данной схемы регулировки - нет запоминания исходного состояния в момент включения, а также конденсатор по истечению времени все же теряет свой заряд.

Но тем не менее данное решение может отлично справиться, для примера, с задачей регулировки громкости в простом усилителе.

Детали и конструкция

Полевой транзистор КП304 может быть заменен на транзистор КП301. Внешний вид и цоколевка приведена на рисунке 1. Также очень важно установить в схему правильный конденсатор С12, он должен быть энергоемким, здесь отлично подойдут комбинированные конденсаторы.

Комбинированные конденсаторы общего назначения выполнены в стальных герметичных корпусах (К75-12, К75-24) или же в изоляционном эпоксидном корпусе (К75-47) с номинальной емкостью до 10 мкФ и номинальным напряжением от 400 Вольт до 63 кВольт.

Использование комбинированного диэлектрика в таких конденсаторах позволяет улучшить стабильность электрических параметров, расширить интервал рабочих температур, а также в некоторых случаях улучшить их характеристики по сравнению с бумажными конденсаторами.

В данной схеме лучше всего использовать импульсные энергоемкие комбинированные конденсаторы К75-11, К75-17, К75-40, с емкостю - от 0,22 до 1мкФ. Можно поэкспериментировать и с другими типами конденсаторов, но их эффективность в данной схеме, скорее всего, будет не лучшей.

Рис. 2. Внешний вид конденсаторов К75-11.

Монтаж желательно выполнить на двухстороннем фольгированном текстолите, одна сторона - для дорожек, а вторая - экран с подключением к общему.

Внимание! Паять полевой транзистор нужно очень аккуратно, он ботся статического напряжения, а также может выйти из строя в случае перегрева.

В результате получается такой себе электронный переменный резистор с кнопочным управлением . Схема очень простая и начинает работать сразу после включения.

При помощи подстроечного резистора R23 устанавливается нужный порог регулирования, а также начальное значение напряжения на выходе.

Как известно, переменные резисторы, которые во всевозможной звуковой аппаратуре служат для регулировки громкости, тембра и прочего стереобаланса, со временем изнашиваются. И при вращении ручек регуляторов из колонок раздаётся хрип, треск, щёлканье, и другие немузыкальные звуки.
Причём громкость их по мере износа меняется от едва заметного шороха до треска вполне сравнимого с уровнем полезного сигнала.

Сейчас, когда в продажу хлынула музыкальная техника с цифровым кнопочным управлением, для многих меломанов проблема отошла в прошлое.
Но и сейчас ещё много найдётся любителей музыки предпочитают слушать её через старый добрый советский, импортный или самодельный усилитель со старыми добрыми переменниками.

Надеюсь, что кому-то из вас эта статья пригодится. Хотя возможно, что я очередной раз берусь с умным видом объяснять очевидные вещи.

Приходит время и регулятор, верой и правдой прослуживший не один десяток лет и переживший иногда сам аппарат, в котором был установлен изначально, начинает хрипеть. Обычно за это ругают советские переменные резисторы. Но, рано или поздно, беда настигает регулятор независимо от страны-производителя.

У того, кто взялся сию беду устранять, есть два пути решения проблемы. Попытаться вернуть работоспособность старому переменнику или заменить на новый.

Заменить, конечно, хороший выход, только на что?
Если повезёт, в куче запчастей, скопившихся у радиолюбителя с незапамятных времён, можно найти другой такой же переменник или с близкими параметрами. Но где гарантия, что и он скоро не захрипит. По возрасту он, возможно, почти ровесник заменяемому и неизвестно где стоял, как часто его крутили и в каких условиях аппарат эксплуатировался.

Если поблизости есть магазин, или ещё какое заведение торгующее радиодеталями можно купить там изделие «братской узкоглазой республики», представляющее из себя подстроечник, к которому наспех приделали корпус и ось. Такой резистор обычно практически никак не защищённое от попадания внутрь пыли влаги и прочего наружного мусора. А выводы иногда приклёпаны к угольной «подкове» так, что болтаются даже у нового резистора, гарантируя те же хрипы, треск и пропадание звука.

Возможно, где-то поближе к цивилизации можно добыть качественную деталь, но судя по ценам в музыкальных магазинах, где иногда продаются переменники для электрогитар, цена может составить очень большую долю от цены самого ремонтируемого изделия.

Вскрытие покажет. Потенциометр СПЗ-30 изнутри

С точки зрения простоты ремонта переменные резисторы я делю на три типа – разборные, условно неразборные и почти неразборные.
Начну с самого простого – разборного. Например - СПЗ-30а, как довольно крупный и часто встречающийся. К тому же, по моему мнению - вообще один из лучших переменников, созданных в СССР. По крайней мере, по таким параметрам, как защита от попадания «забортного мусора» и ремонтопригодность. А с недостатками, вроде «неполного обнуления» в крайних положениях, или несовпадение сопротивлений (в сдвоенных) между движком и крайними выводами при регулировке, в звуковой технике вполне можно смириться.
Большинство советов подойдут и к более старым СП-1, ВЗР, как одинарным, так и сдвоенным.
Портрет «зверя» крупным планом. Прошу извинить за качество фоток - снимал непосредственно во время «операции», год назад, камерой, оказавшейся под рукой, не заморачиваясь с настройками и освещением.

Будем считать, что сопротивление между крайними выводами измерено, существует, не сильно превышает указанное на корпусе и не «плавает». В противном случае деталь можно спокойно выбросить, ну или пустить на запчасти. Где-то в литературе встречал способ изготовления из деталей СП3, малогабаритного многопозиционного переключателя.

Отгибаем 4 усика, помеченные стрелками, и снимаем крышку. Любуемся на нехитрый внутренний мир:

А пока, небольшое «лирическое отступление».
Почти к каждому, кто связал свою жизнь с радиолюбительством, рано или поздно все знакомые, родственники, родственники знакомых и знакомые родственников тащат на ремонт свою убитую технику. Бывает что и из-за «хрипатого» регулятора.

Приносящие делятся на две категории.
1. Простые пользователи - как правило, несут свой аппарат сразу же, как только неисправность дала о себе знать.
2. Более или менее продвинутые пользователи - перед тем как принести, пытаются исправить сами, пользуясь своими «знаниями» или советами «знающих».
От таких частенько слышал примерно такой монолог: «Я сам пытался сделать. Спиртом, водкой, „тройным одеколоном“ протирал. Маслом капал, карандашом подкову натирал, толчёный карандаш с маслом смешивал и капал. Пара дней и снова то же самое. Сделай что-нибудь! Задолбало, блин!!!»

Вот так и выглядят обычные советы, которые гуляют в народе и даже иногда помогают (иначе б не гуляли).

Действительно - глядя на заляпанную старой почерневшей смазкой угольную «подкову» первая мысль, которая приходит в голову - почистить всё это хозяйство прямо так - через щель между диэлектрической шайбой одетой на вал и стенкой пластмассового корпуса.
Но всё же лучше продолжить разборку. И доступ к очищаемым поверхностям лучше будет, а там глядишь - и ещё что интересное обнаружится.

Разгибаем упорное кольцо:

И вытаскиваем ось, вместе с текстолитовой шайбой с закреплённым на ней подвижным контактом.
Сразу же внимательно рассматриваем состояние угольного слоя на «подкове».

В данном случае неплохо сохранился. Значит, в дальнейших действиях есть какой-то смысл. Если же он стёрся настолько, что на месте где должен быть графит видно текстолитовую основу - «медицина бессильна». Хотя если честно - за время с 80-х годов встречал только два (!) настолько затёртых переменника. Один из них стоял в магнитофоне «Маяк-232», работавшем в одной из школ. Там, видимо из-за заводского брака, рассыпалась угольная щётка на подвижном контакте и подкову просто сточило металлическим пружинным электродом. Я так подумал, потому что переменник был сдвоенный, а второй резистор блока был ещё вполне нормальным. Магнитофону на тот момент лет десять было, если не больше.

Теперь поверхность подковы можно, и даже нужно очистить от «вековой грязи» (особенно после «толчёного карандаша в масле») спиртом или чистым бензином для зажигалок. Заодно нужно почистить пружинные контакты, соединяющие центральный вывод с движком.
А потом внимательно посмотреть на поверхность, по которой эти контакты должны скользить:

Даже при таком качестве фото видно, что выглядит это место, мягко скажем, страшновато. Контакты протёрли заметную «траншею», которая из-за слоя смазки кажется глубже, чем на самом деле. А если разглядеть получше, можно увидеть, что поверхность металла где-то замазалась, где-то окислилась и надёжный контакт видит только во снах о давно ушедшей молодости.

Очищаем металл от старой, иногда затвердевшей до полного сходства с парафином, смазки и грязи, графитной пыли. При необходимости счищаем окись ластиком. Жаль старые добрые советские красные ластики уже не найти. А сколько ими было двоек в дневнике подтёрто, чтобы легче на тройки исправить. А контактов в телевизионных ПТК почищено (часто зря). О прочих тумблерах и П2К вообще молчу.

Пришло время заняться угольной щёткой подвижного контакта

За «долгую счастливую жизнь» поизносилась, конечно. Жаль нет под рукой совершенно нового такого же переменника, чтобы уточнить насколько. Поэтому чаще оценивал степень износа «на глазок».
Если осталось около одного миллиметра - ещё поживёт, если меньше 0,5 мм - делал новую из грифеля карандаша, или угольного стержня от случайно подвернувшейся разряженной пальчиковой батарейки (АА). Вырезал обычно тем ножом, который в этот момент был под рукой, потом выравнивал контактную поверхность об напильник. Что-то похожее когда-то описывалось в журнале «Радио».

Насчёт материала: как-то встречал в Сети спор, что лучше - угольный стержень от батарейки или карандаш. А если карандаш, то какой твёрдости. Сам пока к определённому выводу не пришёл. То, что делал для себя пока работает и то хорошо. А использовал в основном те карандаши, которыми в тот момент пользовался сам, твёрдостью где-то на уровне «ТМ» - «Т». А твёрдость угольных стержней из батареек, кто ж её знает-то.

Перед установкой щётки на законное место я делал ещё одну вещь. Кончик пружинного контакта, примерно от отверстия для щётки, отгибал на небольшой угол (зелёная стрелка на фото). А также стачивал мелкой шкуркой, надфилем или, в крайнем случае, ножом заусенцы на краях этого отверстия и торцах пружины, если были. Как-то спокойней потом, хотя в реальной пользе от этого действия не уверен.

Перед окончательной сборкой все трущиеся поверхности смазывал машинным маслом (самым густым, какое было в наличии), Если была возможность – «Литолом» или «ЦИАТИМ-ом». Что-то другое в наших краях достать сложнее.

После подобных процедур все посторонние звуки обычно пропадают и надолго.

Немного про СП-1


Недавно попало в руки одно устройство, где для регулировки громкости использовался великий и ужасный… СП-1. И та же самая проблема с хрипом треском и пропаданием звука.
А значит, появилась возможность рассказать об одном его отличии от СП3, которое очень даже может служить причиной неполадок, и на которое можно сразу не обратить внимание. В магнитофоне, который у меня был в школьные времена, несколько раз регулятор громкости перебирал, пока случайно не наткнулся.
Кстати разборка происходит точно так же, как и в предыдущем примере.
Но в отличии от СП3, у СП-1 неподвижный контакт, приклёпанный к центральному выводу не пружинный, а плоский, кольцеобразный. Этот самый контакт спокойно себе лежит в предназначенном для него пазу. И если его специально не пошевелить, то можно и не заметить что он иногда свободно болтается на заклёпке.

И контакт этот между выводом и движком переменника появляется и пропадает по собственному желанию. Не исключено, что встречаются и СП3 с болтающимся на заклёпке центральным контактом, но мне такие пока не попадались.

Для устранения неисправности, как многие догадались, достаточно пропаять это соединение. Для большей надёжности можно пропаять и со стороны вывода, хотя чаще всего это не требуется.
Кстати, угольный слой очень даже неплохо сохранился для переменного резистора с металлическими щётками из устройства конца 70-х годов.

Вот такие достаточно простые рекомендации по возвращению к активной жизни захрипевших переменных резисторов. Правда, здесь я рассмотрел только один тип, но повторюсь - другие отличаются только способом разборки-сборки. Составные части и места возможного появления неисправностей одинаковы.

P.S. Бывает, можно купить новый переменник с описанным дефектом. Неизвестно ведь сколько, где и в каких условиях он хранился до этого. Даже если и выглядит как новый.
На всякий случай, перед установкой в изделие, стоит проделать вышеописанные операции. Анекдот про «доработать напильником» не просто так придумали. Я сам несколько раз сталкивался с тем, что «свежий» регулятор «шуршит» при приближении движка к крайним точкам. Обычно после чистки и смазки «болезнь» пропадает. Недавно поставил свежекупленые малогабаритные СПЗ-40 в темброблок электрогитары, и сразу же пришлось снова снимать все четыре резистора и проводить те же процедуры.
С тех пор работает второй год без нареканий.

Читательское голосование

Статью одобрили 43 читателя.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: