Строительство, ремонт, дизайн

Основная часть обычного листа – это его пластинка. Листовая пластинка – это расширенное плоское образование, выполняющее функции фотосинтеза, газо- и водообмена. Кроме пластинки листья часто имеют черешок – удлиненную цилиндрическую стеблеподобную часть, с помощью которой пластинка прикрепляется к стеблю. Если черешок есть, лист называют черешковым, а при его отсутствии – сидячим. Нижняя часть листа – его основание – может разрастаться и в виде трубки охватывать стебель. Такое образование называется листовым влагалищем. Довольно часто при основании листа у черешка находятся особые выросты – прилистники. Прилистники бывают парными, различной формы и величины, зеленые или бесцветные, свободные или сросшиеся с черешком. Прилистники могут опадать по мере роста листа или не опадать.

Простыми называют листья, имеющие одну листовую пластинку на черешке, а у сложного листа к одному черешку прикрепляются несколько пластинок, называемых листочками.

Простой лист. Листовая пластинка у простого листа может быть цельной или, напротив, расчлененной, т.е. в той или иной степени изрезанной, состоящей из выступающих частей пластинки и выемок. Для определения характера расчлененности, степени и формы изрезанности листовых пластинок и правильного наименования таких листьев, прежде всего, следует учесть, как распределяются выступающие части пластинки – лопасти, доли, сегменты – по отношению к черешку и к главной жилке листа. Если выступающие части симметричны главной жилке, то такие листья называют перистыми. Если выступающие части выходят как бы из одной точки, листья называются пальчатыми. По глубине вырезов листовой пластинки различают листья: лопастные, если выемки (глубина надрезов) не доходят до половины ширины полупластинки (выступающие части называют лопастями); раздельные, при глубине вырезов, заходящих глубже половины ширины полупластины (выступающие части – доли); рассеченные, при глубине надрезов, доходящих до главной жилки или почти ее касающихся (выступающие части – сегменты).

Сложный лист. Сложные листья по аналогии с простыми называются перистыми и пальчатыми с добавлением слова «сложный». Например, перистосложный, пальчатосложный, тройчатосложный и т.д. Если сложный лист оканчивается одним листочком, лист называется непарноперистосложным. Если же он оканчивается парой листочков, то называется парноперистосложным.
Расчленение пластинки простого листа, так же как и ветвление частей сложного листа, может быть многократным. В этих случаях с учетом порядка ветвления или расчленения говорят о дважды-, трижды-, четыреждыперистых или пальчатых, простых или сложных листьях.

Основные формы листовой пластинки

Типы расчленения пластинок простых листьев и классификация сложных листьев


Основные типы края листа

1 - цельнокрайний; 2 - выемчатый; 3 - волнистый; 4 - шиповатый; 5 - зубчатый; 6 - двоякозубчатый; 7 - пильчатый; 8 - городчатый

Формы верхушки Формы верхушки, основания и края листовых пластинок также являются признаками, используемыми при описании и определении растений.

Основные формы верхушки листовой пластинки

1 - остистая; 2 - остроконечная; 3 - заостренная, или острая; 4 - притупленная; 5 - округлая; 6 - усеченная; 7 - выемчатая

Формы основания листовой пластинки

1 - сердцевидное; 2 - почковидное; 3 - стреловидное; 4 - копьевидное; 5 - выемчатое; 6 - округлое; 7 - округло-клиновидное; 8 - клиновидное; 9 - оттянутое; 10 - усеченное

Главные типы листьев

1 - игловидный (хвоя); 2 - линейный; 3 - продолговатый; 4 - ланцетный; 5 - овальный; 6 - эллиптический, дугонервный, цельнокрайний; 7 - округлый; 8 - яйцевидный, перистонервный, зубчатый; 9 - обратнояйцевидный; 10 - ромбический; 11 - лопатчатый; 12 - сердцевиднояйцевидный, городчатый; 13 - почковидный; 14 - стреловидный; 15 - копьевидный; 16 - перистолопастный; 17 - пальчатолопастной, пальчатонервный; 18, 19 - пальчаторассеченный; 20 - лировидный; 21 - тройчатосложный; 22 - пальчатосложный; 23 - парноперистосложный, с прилистниками и усиками; 24 - непарноперистосложный с прилистниками; 25 - дваждыперистосложный; 26 - многократноперистосложный; 27 - прерывчато-перистый; 28 - чешуйчатый

Математическая модель кинетики роста растений

Колпак Евгений Петрович,

доктор физико-математических наук,

Столбовая Мария Владимировна,

аспирант.

Санкт-Петербургский государственный университет.

Mathematical Model of Plant Growth Kinetics

Maria Stolbovaya

doctoral student, St. Petersburg State University.

Evgenii Kolpak

D.Sc, St. Petersburg State University.

В работе приводятся результаты исследований по изучению кинетики роста растений. На основе экспериментальных данных предложена математическая модель изменения линейных размеров растений, представляющая собой задачу Коши для обыкновенного дифференциального уравнения.

Ключевые слова: математическое моделирование, морфогенез, кинетика роста.

This paper describes the results of a study in the kinetics of plant growth and offers a mathematical model of changes in their dimensions based on the experimental data obtained. The model is a Cauchy problem for an ordinary differential equation.

Keywords: mathematical modeling, morphogenesis, growth kinetics.

Динамика роста растений впервые, по-видимому, описана в работах Сакса (1832 – 1897) – линейный размер растений во времени в его экспериментах изменялся по «логистической» зависимости. На сегодняшний день многочисленные экспериментальные данные, опубликованные в литературных источниках , с различной степенью точности согласуются с таким характером изменений, как линейных размеров, так и суммарной биомассы растений. Однако, для описания изменения «параметра», характеризующего как рост отдельного растения, так и накопление их общей биомассы, предлагаются различные аппроксимирующие зависимости такие, как экспоненциальная, линейная, параболическая и другие , не учитывающие внутренние биологические процессы, обуславливающие рост растений, и внешние воздействия, такие как дополнительное питание, температурные изменения, антропогенное воздействие. В работе предлагается математическая модель роста отдельного растения, разработанная на основе авторских экспериментальных данных.

Анализ кинетики роста растений проводился на таких растениях как гречиха, просо, момордика, лагенария, лаванда, чуфа, тюльпан и др. Исследования проводились с 2000 по 2012 год на учебно-опытном участке Кингисеппской станции юных натуралистов и в теплицах ЗАО «Радуга» Кингисеппского района. В экспериментах принимали участие Столбовая М.В., Мерзлякова С.Н., Лихачёва Н.В.

Всерастения (табл. 1), кроме тюльпанов, выращивались в летний период в естественных условиях с 2000 по 2012 гг. Для тюльпанов производилась выгонка в зимний период в условиях, при которых регулировалась температура почвы и воздуха. На выращивание каждого сорта выделялось площадь в 10 кв.м. Некоторые растения требовали предпосевной обработки семян, выращивания рассады, подготовки почвы с её дезинфекцией раствором марганцево-кислого калия. На постоянное место высаживались (высевались) тогда, когда миновала угроза возврата заморозков. Дополнительное питание растениям давали в виде подкормок сложным минеральным удобрением. Прополку и полив производили по мере надобности. В процессе роста растений проводились замеры высоты растений механическим способом на протяжении всего вегетационного. Высота растений измерялась с помощью линейки примерно 1 раз в 7-10 дней. Температура измерялась ежедневно.

На рис. 1 приведены экспериментальные данные (отмечены звёздочками) для гречихи 1. Аналогичные зависимости (согласуется с данными, опубликованными в ) получены и для остальных растений (табл. 1) за весь период проведения эксперимента. Максимальная высота растений изменялась от 17 см до 110 см. Время роста от 80 до 110 дней.

Рис. 1. Зависимость «высота растения – время» для гречихи 1.

Все экспериментальные данные по кинетике роста близки к логистической зависимости. Т.е., для описания динамики роста растений можно использовать уравнение :

где – время (дни), − текущая высота растения (см), − теоретическая максимальная высота (см), которую может достигнуть растение по окончанию роста, − константа (удельная скорость роста, размерность – 1/день ). Решением данного уравнения является функция ( − начальная высота растения):

.

Эта зависимость использовалась для описания полученных экспериментальных данных. Константы и подбирались с применением метода наименьших квадратов. Результаты обработки экспериментов (константа ) для некоторых растений приведены в табл. 1. Как следует из полученных результатов, константы для исследуемых растений изменялись в диапазоне 0.06 – 0.15. Погрешность их определения за три года измерений по всем культурам составляла не более остальные 5 %.

Таблица 1.

Выращиваемые растения и расчетные значения удельных скоростей роста.

Название растения

Удельная скорость роста ()

Название растения

Удельная скорость роста ()

Гречиха 1

0.15

Просо казанское 176

0.07

Гречиха 2

0.17

Тюльпан Denise

0.06

Просо вольное

0.09

Тюльпан Denmark

0.09

Просо быстрое

0.08

Тюльпан Escape

0.09

Одним из самых важным факторов, влияющих на рост растений, является температура. Как следует из наших экспериментальных данных, изменение температуры во времени в течение вегетационного периода можно описать функцией

где – минимальная температура за вегетационный период, а – максимальная, – частота изменения максимальных значений температуры.

Растения, с которыми проводился эксперимент, развиваются, если температура воздуха изменяется в диапазоне от (10°С в эксперименте) до (30°С в эксперименте). Если считать, что скорость роста максимальна при температуре , тогда удельная скорость роста растения будет пропорциональна функции

если ,

если или ,

где − значение температуры в текущий момент времени.

Эта функция температуры принимает нулевые значения при и и достигает экстремума равного 1 при . Аналогичный подход учета влияния температуры на рост растений использовался в .

Уравнение, для скорости роста растений с учетом введенного температурного режима примет вид:

, если ,

Если или .

В этой модели предполагается, что растение не погибает при «нарушении» температурного режима, а лишь прекращается его рост. Численное решение дифференциальных уравнений и обработку экспериментальных данных удобнее реализовывать в среде программирования математического пакета Matlab , имеющего набор необходимых встроенных функций.

Таким образом, учет температурного режима может более точно описать экспериментальные данные и объяснить отклонения экспериментальных данных от логистической зависимости более «биологически» обоснованной, чем полиноминальные функции.

Литература

1. Баранов В.Д., Устименко Г.В. Мир культурных растений. М.: Мысль, 1994. 232 с.

2. Винокурова Р.И., Силкина О.В. Ростовые характеристики хвои деревьев пихты сибирской (Abies Sibiricf L.) и ели обыкновенной (Picea Abies L.) // Вестник МарГТУ. 2008. № 2. С. 40 – 50.

3. Горбунова Е.А., Колпак Е.П. Математические модели одиночной популяции // Вест. С.-Петерб. ун-та. Сер. 10: Прикладная математика, информатика и процессы управления. 2012. Вып. 4. С. 18 – 30.

4. Зайцев Г.Н. Математическая статистика в экспериментальной ботанике. – М.: Наука, 1984. 424 с.

5. Звягинцев А.Ю. Морское обрастание в северо-западной части Тихого океана. Владивосток: Дальнаука, 2005. 432 с.

6. Злобин Ю.А. Популяционная экология растений: современное состояние. Сумы: Университетская книга. 209. 263 с.

7. Колпак Е.П. MatLab: методы вычислений / Санкт-Петербургский гос. ун-т. Санкт-Петербург, 2007. 100 с.

8. Кузнецов В.И., Козлов Н.И., Хомяков П.М. Математическое моделирование эволюции леса для целей управления лесным хозяйством хозяйством. М.: Ленад. 2005. 232 с.

9. Медведев С.С. Физиология растений: Учебник. – Спб.: Изд-во С.-Петерб. ун-та, 2004. 336 с.

10. Назарова С.А., Генельт-Яновский Е.А., Максимович Н.В. Линейный рост Macoma Balthica в осушенной зоне мурманского побережья Баренцева моря // Вестник СПбГУ. Сер. 3. 2010. Вып. 4. С. 35 – 43.

11. Разин Г.С., Рогозин М.В. О ходе роста древостоев. Догматизм в лесной таксации // Вестник Пермского ун-то. Биология. 2009. Вып. 10(36) . с. 9 – 38.

12. Раилкин А.И. Колонизация твердых тел бентосными организмами. – СПб.: Изд-во С.-Петерб. ун-та, 2008. 427 с.

13. Суханова Е.С., Кочкин Д.В., Титова М.В., Носов А.М. Ростовые и биосинтетические характеристики разных штаммов культур клеток растений рода Polyscias // Вестник ПГТУ. 2012. № 2. С. 57 – 66.

14. Уоринг Ф., Филипс И.Ф. Рост растения и дифференцировка. М.: Мир. 1984. 512 с.

15. Усольцев В.А., Воробейчик Е.Л., Бергман Биологическая продуктивность лесов Урала в условиях техногенного загрязнения: исследование системы связей и закономерностей. Екатеринбург: УГЛТУ. 2012. – 366 с.

16. Hewatt W.G. Ecological succession in the Mytilus californianus habitat as Observed in Monterey Bay // Cal. Ecol. 1935. V. 16. P. 244-251.

17. Prisman T.I., Slyusar N.A. Mathematical model of seasonal growth of halophytic plant community with account of environmental factors: International meeting of soil fertility land management and agro climatology. Turkey, 2008. P. 43-51.

18. Urban H.J. Modeling growth of different developmental stages in bivalves // Mar. Ecol. Prog. Ser. 2002. Vol. 238. P. 109-114.

19. Wahl M. Living attached: Aufwuchs, fouling, epibiosis // Fouling Organisms in the Indian Ocean: Biology and Control Technology (Nagabhushanam R., Thompson M.F., Eds.). New Delhi: Oxford and IBH Publ. Co, 1997. P. 31-83.

20. Wahl M. Marine epibiosis. I. Fouling and antifouling: some basic aspects // Mar. Ecol. Progr. Ser. 1989. Vol. 58, N 1-2. P. 175-189.

21. Wahl M., Hoppe K. Interactions between substratum rugosity, colonization density and periwinkle grazing efficiency // Mar. Ecol. Prog. Ser. 2002. Vol. 225. P. 239-249.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Практически единственным источником энергии для всех живых организмов является энергия солнца. Напрямую преобразовать солнечную энергию может только одна группа организмов - зеленые растения и фотосинтезирующие организмы. Речь идет об уникальном природном явлении - фотосинтезе. Все остальные организмы поглощают энергию солнца, преобразованную зелеными растениями в энергию органических веществ - сахаров. Главный орган растений, участвующий в фотосинтезе - лист. Поэтому изучение листьев растений - очень актуальная тема . Растения сами используют для себя произведённые вещества, как источник питания. Казалось бы - чем больше лист, тем лучше, так как больше вырабатывается «пищи». Но у огромного большинства наших северных растений лесов и лугов листья некрупные и даже мелкие. Так отчего же зависит форма листа? Мы предположили гипотезу - форма зависит от условий окружающей среды - освещённости, температуры, увлажнения.

Этот вопрос определил цель нашего исследования - выяснить зависимость между условиями окружающей среды и формой листовых пластинок растений луга и леса

Задачи :

    Рассмотреть особенности внутреннего, внешнего строения листа, как главного органа растений, его функции;

    Определить, в чём проявляется влияние условий окружающей среды на форму листовой пластинки;

    Собрать образцы светолюбивых растений луга и тенелюбивых растений леса;

    Провести исследование - сравнить размеры, формы листовых пластинок светолюбивых и тенелюбивых растений

Объект исследования: зелёные растения

Предмет исследования: листовые пластинки растений нашей местности.

Глава 1. Лист - важнейший орган растений

1.1. Внешнее строение листа

Внешнее строение листа. Лист всегда занимает боковое положение в побеге, располагаясь в узлах стебля. У преобладающего числа высших растений лист имеет плоскую форму.

У листа различают листовую пластинку, черешок, прилистники и основание, которым он прикрепляется к стеблю. Есть растения, у которых черешок и прилистники отсутствуют. У многих растений листья простые — они имеют только одну листовую пластинку (рисунок 1) .

Рис. 1. Внешнее строение листа: 1 — листовая пластинка; 2 — жилки; 3 — черешок; 4 — прилистники; 5 — основание листа

Есть растения, у которых лист имеет несколько листовых пластинок. Такие листья называют сложными (рисунок 2).

Рис. 2. Разнообразие листьев. Простые листья: 1 — сирень; 2 — яблоня; 3 — клен; 5 — одуванчик. Сложные листья: 4 — клевер; 6 — шиповник; 7 — малина; 8 — земляника; 9 - люпин

При изучении внешнего строения листа хорошо видно, что на листовой пластинке многих растений четко выражены жилки. Они представлены пучками проводящей и механической ткани. По жилкам в лист поступают вода и минеральные соли и отводятся органические вещества, образовавшиеся в листе. У одних растений жилки примерно одинаковые по величине и лежат дугообразно или параллельно друг другу. У других они представлены перисто-разветвленной сетью мелких жилок, сходящихся в одну крупную центральную жилку в середине листа. Перистое и пальчатое жилкование характерно для листьев двудольных растений, а параллельное и дуговое — для листьев многих однодольных растений (см. приложение 1, с).

Размеры листьев у растений разные. Так, у пальмы, монстеры, кувшинки белой и кубышки желтой листья очень большие: их длина вместе с черешком достигает 150-200 см, у некоторых пальм — даже 5-12 м. А вот у вереска и иглицы они совсем мелкие, длиной всего 2-3 мм..

1.2. Внутренне строение листа

Снаружи лист покрыт кожицей. Она образована слоем прозрачных клеток покровной ткани, плотно прилегающих друг к другу. Кожица защищает внутренние ткани листа. Стенки ее клеток прозрачны, что позволяет свету легко проникать внутрь листа.

На нижней поверхности листа, среди прозрачных клеток кожицы, находятся очень мелкие парные зеленые клетки, между которыми есть щель. Пару замыкающих клеток и устьичную щель между ними называют устьицем. При недостаточном водоснабжении растения устьица закрыты. С поступлением воды в растение они открываются (рисунок 3).

Рис. 3 . Участие устьиц в газообмене и испарении влаги

Устьица встречаются в кожице всех наземных растений. Их количество у растений огромно — от 80 до 300 штук и больше на 1 мм² поверхности листа. Например, у клена на 1 мм² поверхности листа приходится 550 устьиц, а у кубышки желтой — 650.

Ткани листа. Внутри листа имеется очень много клеток хлорофильной ткани — мякоть листа. Из-за большого количества хлоропластов в клетках мякоти лист имеет зеленый цвет. Присутствие большого числа зеленых хлоропластов в мякоти листа свидетельствует о том, что в этой части осуществляется фотосинтез, т. е. здесь образуются органические вещества.

В мякоти листьев различают два типа клеток. По внешнему виду клеток и их расположению в мякоти листа различают столбчатую и губчатую ткани. Клетки столбчатой ткани содержат большую часть (примерно ¾) всех хлоропластов листа. Они лучше освещены, в них на свету образуется больше всего органических веществ. Через рыхлую губчатую ткань происходит газообмен и испарение воды (рис. 4).

Строение мякоти листа по-разному представлено у листьев, развивающихся в различных условиях освещения. У растений, выросших в условиях яркого освещения, листья обычно имеют два или три слоя столбчатой ткани — их называют световыми. У растений, выросших при недостатке света, в тени, столбчатые клетки образуют только один тонкий слой в верхней части листа — их называют теневыми.

Рис. 4 . Схема внутреннего строения листа

У большинства растений устьица располагаются преимущественно на нижней стороне листа, но у некоторых (например, у эвкалипта, капусты) они находятся на обеих сторонах листа. У растений с плавающими на воде листьями (кубышка, кувшинка) устьица сформировались только на верхней стороне листа, обращенной к воздушной среде .

1.3. Функции листа

Образование органических веществ. Зеленый лист выполняет важную функцию в жизни растения — здесь образуются органические вещества. Строение листа хорошо соответствует этой функции: он имеет плоскую листовую пластину, а в мякоти листа содержится огромное количество хлоропластов с зеленым хлорофиллом.

Образование органических веществ в процессе фотосинтеза - одна из основных функций листа.

Испарение воды — еще одна важная функция листа. Испарение обеспечивает взаимосвязь корней и листьев растения.

Процесс испарения воды листьями у растения регулируется открыванием и закрыванием устьиц. Закрывая устьица, растение защищает себя от потери воды.

Из внешних факторов на работу устьиц влияет сухость воздуха, условия водоснабжения, яркость света и температура. Так, во время засухи у большинства растений устьица закрыты. Многие растения открывают устьица лишь вечером и ночью, когда спадает жара. Но у большинства деревьев, теневыносливых растений, многих злаков максимальное испарение воды происходит в дневное время.

Газообмен. Листья благодаря работе устьиц осуществляют и такую важную функцию, как газообмен между растением и атмосферой. Через устьица в лист с атмосферным воздухом поступают кислород и углекислый газ.

Листопад. В процессе жизнедеятельности листья к концу вегетационного периода стареют, питательные вещества из них оттекают, хлорофилл начинает разрушаться, листья окрашиваются в желтый или красноватый цвет, а в тканях листа скапливаются отработанные ненужные вещества. Состарившиеся листья удаляются благодаря листопаду. Это выработанное в процессе эволюции приспособление обеспечивает не только удаление ненужных растению веществ, но и сокращение поверхности надземных органов в неблагоприятный период года.

У некоторых растений листья приобрели и другие функции. Многие растения размножаются листьями (вегетативное размножение). Некоторые растения в листьях откладывают запасные питательные вещества, например очиток, молодило, алоэ, кочанная капуста, лук.

У гороха посевного и мышиного горошка наряду с обычными листьями имеются листья в виде усиков. С их помощью непрямостоячие побеги этих растений, цепляясь за опору, поднимаются выше и выносятся к свету.

У барбариса, караганы, верблюжьей колючки некоторые листья стали колючками, которые защищают побеги от животных. У кактусов листья видоизменились в острые иглы.

В природе есть немало растений, которые способны с помощью листьев улавливать насекомых и их переваривать. Обычно такие насекомоядные растения произрастают на почвах, бедных минеральными веществами, особенно с недостаточным содержанием азота, фосфора, калия и серы. Из тел насекомых эти растения получают необходимые им неорганические вещества.

В озерах на территории России часто встречается растение пузырчатка, плавающая у поверхности воды. Среди ее нитевидных зеленых листьев некоторые имеют форму ловчих пузырьков (диаметром 2-5 мм) с крышечкой. Попавшие в них мелкие животные, например дафнии, перевариваются и всасываются растением. Так растение компенсирует дефицит минеральных веществ (особенно соединений азота), которых недостаточно в воде озера .

Глава 2. Влияние условий окружающей среды на форму листовой пластинки растений

2.1. Влияние климатических характеристик на размерлиста

Считается, что современное распределение растений на Земле определяется климатом, и поэтому зоны растительности почти всегда соответствуют климатическим зонам. Климат и почвы прежде всего влияют на внешние характеристики видов растительности, что обусловливает внешнее подобие растений из областей со сходными экологическими условиями. Листья, как фотосинтетические органы растения оптимально приспособлены к климатическим условиям.

Форма листовой пластинки отражает особенности окружающей среды.

Подтверждением этого предположения послужили результаты исследований ученых из университетов Тюбингена (Германия) и Лиона (Франция), которые изучали зависимость формы листовой пластинки деревьев Европы от климатических факторов. Ученые ограничились изучением древесной растительности. Материал был собран на территории Европы, данные были получены на 1835 участках. На каждом участке виды деревьев группировались по 25 показателям.

Результат: форма листа в основном зависит от температур (среднегодовой, суммарной, минимальной, продолжительности промерзания почвы), причем в большей степени от минимальных, чем от максимальных - наиболее тесная взаимосвязь наблюдается между минимальной температурой и наличием у листьев острого основания. Связь между наличием у деревьев цельнокрайних листьев и температурой несколько слабее, хотя холод можно рассматривать как стрессовый фактор, способствующий образованию у листовой пластинки неровностей по краю. Параметры, связанные с осадками, не имели достоверной связи с показателями формы листьев.

Полученные данные свидетельствуют, что важнейшее значение в эволюции листопадной флоры имело приспособление к холоду, главным образом, к наиболее низким температурам.

2.2. Зависимость формы листовой пластинки от освещённости

2.2.1. Влияние освещённости на строение листьев

Анатомическое строение листьев светолюбивых и тенелюбивых растений представляет немаловажные отличия. Листья светолюбивых растений часто равносторонни, если они занимают вертикальное положение, листья же тенелюбивых растений всегда двусторонни.

Светолюбивые и тенелюбивые (гелиофильные и гелиофобные) растения различаются между собою значительно как по своей внешней форме, так и по внутреннему строению.

Сильное освещение замедляет рост побегов; поэтому-то гелиофильные растения часто короткочленистые и сжаты, гелиофобные же наоборот длинночленистые.

Растения, составляющие лесной ковер, обыкновенно высоки, с длинным стеблем. Листья светолюбивых растений обыкновенно узки, мелки, линейной или сходной формы, между тем как тенелюбивые растения в тех же условиях имеют большие, широкие листья. Листья майника двулистного, растения, произрастающего обыкновенно в тени кустарников, достигают на солнце всего 1/3, своей обычной величины.

Листья многих видов растений достигают большей величины в северных странах, чем в широтах более южных, что, по-видимому, связано с большей продолжительности периода слабого освещения.

Листья светолюбивых растений часто складчаты (злаки, пальмы), или кудрявы и бугорчаты, между тем как листья теневых растений плоски и гладки.

Палисадная ткань теневых растений всегда невысока, (стебли, бедные листьями или совсем лишённые листьев, имеют обыкновенно высокую палисадную ткань вокруг стебля); зато губчатая ткань достигает у гелиофобных растений более мощного развития. Листья типичных гелиофобных растений состоят всего из одного ряда клеток (костенец колосовидный). Листья гелиофильных растений имеют узкие, а листья гелиофобных растений широкие межклеточные пространства.

Кожица (эпидермис) светолюбивых растений толста и обыкновенно не содержит хлорофилла (она всегда лишена хлорофилла на верхней стороне листа); иногда она преобразовывается путем поперечного деления клеток в многослойную водоносную ткань (тропические растения); её кутикула бывает всегда утолщена.

Кожица теневых растений тонка и однослойна, иногда содержит хлорофилл и покрыта тонкой кутикулой. Листья светолюбивых растений часто блестящи и отражают много света, примером тому служат многочисленные тропические растения.

Листья теневых растений имеют матовый цвет и увядают на сухом воздухе гораздо быстрее листья светолюбивых растений. Эпидермические клетки листьев светолюбивых растений, в особенности на верхней стороне листа, имеют менее волнистые стенки, чем у листьев теневых растений. Только нижняя поверхность двусторонних листьев светолюбивых растений снабжена устьицами или, по крайней мере, они здесь более многочисленны, чем на верхней стороне (исключение представляют некоторые альпийские растения) и погружены в ткань листа. У теневых растений устьица распределены равномерно на обеих сторонах листа, во всяком случае, однако более многочисленны на нижней стороне, и вместе с тем лежат в одной плоскости со всей поверхностью листа или даже приподняты над нею.

Степень волосистости весьма различна. Гелиофильные растения, часто покрыты густыми волосками, серо-войлочного или серебристо-белого цвета, имеют небольшую опушённость, особенно на нижней поверхности (многие растения, растущие на скалах, на пустошах и в степях). Листья гелиофобных растений вообще гораздо менее волосисты, иногда даже совсем голы.

По поводу влияния света на окраску растений следует отметить, что помимо значения света для образования хлорофилла, он может еще, по-видимому, вызывать образование красного клеточного сока (антокиана). Под влиянием непосредственных солнечных лучей эпидермические клетки голых частей растений окрашиваются нередко в красный цвет, что служит, по-видимому, защитой протоплазме и хлорофиллу (многие молодые побеги, проростки, высокогорных и других растений), хотя имеются утверждения, что окраска последних может зависеть и от влияния холода.

Кроме того, ряд исследователей указывают, что окраска листьев, цветков и плодов растений в более высоких широтах более интенсивна, что, быть может, обусловливается действием почти непрерывного освещения.

Из сказанного выше очевидно, что свет оказывает большое влияние на внешнюю форму и внутреннее строение растений. Это подтверждается еще способностью многих растений приспособлять свое анатомическое строение и, главным образом, строение своих листьев к разным условиям освещения ("пластичные листья"). Лист бука, например, имеет на солнце иное строение, чем лист того же бука в тени. Расположение хлорофилльных зерен в клетке и связанный с этим цвет листьев находятся в зависимости от освещения, более сильное освещение вызывает менее интенсивную окраску, и обратно.

2.2.2. Классификация растений по отношению к свету

По отношению к свету все растения, в том числе и лесные деревья, подразделяются на следующие экологические группы:

    гелиофиты (светолюбивые), требующие много света и способные переносить лишь незначительное затенение (к светолюбивым относятся почти все кактусы и другие суккуленты, многие представители тропического происхождения, некоторые субтропические кустарники);

    сциофиты (тенелюбивые)- довольствующиеся наоборот незначительным освещением и могущие существовать в тени (к теневыносливым относятся различные хвойные растения, многие папоротники, некоторые декоративно-лиственные растения);

    теневыносливые (факультативные гелиофиты).

Гелиофиты. Световые растения. Обитатели открытых мест обитания: лугов, степей, верхних ярусов лесов, ранневесенние растения, многие культурные растения.

· мелкие размеры листьев; встречается сезонный диморфизм: весной листья мелкие, летом - крупнее;

· листья располагаются под большим углом, иногда почти вертикально;

· листовая пластинка блестящая или густо опушенная;

· образуют разряженные насаждения.

Сциофиты. Не выносят сильного света. Места обитания: нижние затемненные ярусы; обитатели глубоких слоев водоемов. Прежде всего, это растения, растущие под пологом леса (кислица, копытень, сныть).

Характеризуются следующими признаками:

· листья крупные, нежные;

· листья темно-зеленого цвета;

· листья подвижные;

· характерна так называемая листовая мозаика (то есть особое расположение листьев, при котором листья максимально не заслоняют друг друга).

Теневыносливые. Занимают промежуточное положение. Часто хорошо развиваются в условиях нормального освещения, но могут при этом переносить и затемнение. По своим признакам занимают промежуточное положение.

Глава 3. Исследование зависимости величины листовой пластинки от уровня освещённости

Для исследования мы взяли гербарные образцы растений луга и леса, собранные нами в конце июня.

Исследование № 1 .Сравнение площади листовой пластинки гелиофитов луга и теневыносливых растений леса.

Использовали метод промеров. Из каждой пробы методом случайной выборки выбирают по 10 зеленых листьев, определяют площадь методом линейных измерений по длине (Д) и наибольшей ширине (Ш). Площадь измеренных листьев (S) рассчитывают по формуле:

где n - число измеренных листьев.

Данный метод подходит для злаков и других культур с линейной, округлой формой листьев.

Растение леса

Растение луга

S (растения леса) = 87,5×45,2×0,7×10=27685мм

S (растения луга) = 44,1×7,4×0,7×10=2284,4 мм

Вывод : Площадь листовых пластинок растений леса больше листовых пластинок растений луга примерно в 13 раз.

Причина - разные условия освещённости.

Исследование № 2

Сравнение растений луга и леса по форме листовой пластинки (Смотри приложение 1, с. 23).

Растения леса

Форма пластинки

Растения луга

Форма пластинки

Черёмуха

тупоконечная

край двупильчатый

Люцерна хмелевая

Тройчатый лист ресничный край

Костяника

Непарноперистый

Край двупильчатый

Клевер луговой

Тройчатый лист

Край простой

Непарноперистый

Край пильчатый

Овсяница луговая

Линейный лист

Край простой

Обратнояйцевидны

Край пильчатый

Подмаренник северный

Пальчатый лист

Двупильчатый край

Кизильник

Овальный

Край простой

Рожь луговая

Игольчатый

Край простой

Овальный

Край ресничный

Вьюнок полевой

Сердцевидный

Край простой

Папоротник орляк

Сложный непарноперистый

Край простой

Вейник наземный

Линейный лист, край простой

Гирча тминолистная

Сложный непарноперистый

Лопастный лист

Липучка обыкновенная

Линейный лист

Край простой

Брусника

Лист простой обратнояйцевидный

Нивяник обыкновенный

Линейный лист

Пильчатый карй

Воронец колосовидный

Сложный непарноперистый

Лопастный край двупильчатый

Гравилат речной

Тройчатый лист

Двупильчатый край

Вывод : В лесу у кустарников простые листья, а у большинства трав - сложные. Видимо, это связано с небольшим количеством света у поверхности земли и необходимостью увеличения растениями площади листовой пластинки за счёт сложных листьев

На лугу - листья линейные (у злаков), реже - простые и сложные.

Исследование № 3

Исследование лесных и луговых растений по цвету листовой пластинки (визуально).

Сравнив листья луговых и лесных растений, увидели - листья луговых растений имеют ярко-зелёный цвет (злаки, герань луговая, вьюн полевой, синюха голубая, гвоздика травянка, гравилат и другие), некоторые светло-зелёный, иногда напоминающий налёт (икотник серо-зелёный, полынь горькая, пустырник пятилопастной, лапчатка серебристая).

Листья лесных растений имеют ярко-зелёный и тёмно-зелёный цвет практически все (черника, кизильник, папоротник, рябина, черёмуха, земляника, брусника и другие).

Вывод - растения лесаимеют более тёмные листья с большим количеством хлоропласт из-за дефицита света под пологом леса.

Заключение

В начале работы мы ставили перед собой цель - выяснить зависимость между условиями окружающей среды и формой листовых пластинок растений луга и леса. Рассмотрев работы других авторов по этой теме и проведя собственное исследование, мы можем сделать выводы:

    Лист занимает боковое положение в побеге, у большинства высших растений лист имеет плоскую форму. Плоская форма листа обеспечивает наибольшее соприкосновение поверхности растения с воздушной средой и солнечным светом.

    Лист - это специальный орган, содержащий клетки, которые улавливают солнечный свет, необходимый для осуществления фотосинтеза (воздушного питания). Кроме того лист участвует в газообмене и транспирации - испарении влаги

    Листья, как фотосинтетические органы растения оптимально приспособлены к климатическим условиям. Форма листа в основном зависит от температур, причем в большей степени от низких, чем от высоких. Наблюдается связь между наличием у деревьев цельнокрайних листьев и температурой. Осадки на форму листовой пластинки не влияют (в умеренной зоне).

    Свет оказывает наибольшее влияние на внешнюю форму и внутреннее строение растений. Расположение хлорофилльных зерен в клетке и связанный с этим цвет листьев находятся в зависимости от освещения, более сильное освещение вызывает менее интенсивную окраску, и обратно.

    Мы провели исследования, сравнив растения луга и леса, и пришли к выводу - листья растений луга имеют меньшую площадь листовой пластинки, светлее цвет, листья в основном простые, чем у растений леса. Обозначили причину - разный уровень освещённости. Свет - основной фактор, влияющий на растения.

    Свою гипотезу - форма листьев зависит от условий окружающей среды - освещённости, температуры, увлажнения мы считаем подтверждённой.

Информационные источники

    Учебник биологии 6 класс. Электронная версия (http://blgy.ru/biology6/leaf)

    http://agrosbornik.ru/innovacii1/106-2011-10-09-15-29-31.html

    http://eco-rasteniya.ru/svet-kak-ekologicheskij-faktor.html

    http://lektsii.com/1-100601.html

    http://botanical_dictionary.academic.ru/5917

    https://ru.wikipedia.org/wiki/

    dic.academic.ru/dic.nsf/bse/74352/

Приложение 1

Различие листьев по форме, краю листовой пластинки, жилкованию

Форма листа:

    Веерообразный: полукруглый, или в виде веера

    Двоякоперистый: каждый листик перистый

    Дельтовидный: лист треугольный, крепится к стеблю в основании треугольника

    Дланевидный: разделённый на много лопастей

    Заострённый: клиновидный с длинной вершиной

    Игольчатый: тонкий и острый

    Клинообразный: лист треугольный, лист крепится к стеблю на вершине

    Копьевидный: острый, с колючками

    Ланцетный: лист длинный, широкий посередине

    Линейный: лист длинный и очень узкий

    Лопастный: с несколькими лопастями

    Лопатовидный: лист в виде лопаты

    Непарноперистый: перистый лист с верхушечным листиком

    Обратноланцетовидный: верхняя часть шире, чем нижняя

    Обратносердцевидный: лист в виде сердца, крепится к стеблю на выступающем конце

    Обратнояйцевидный: в виде слезы, лист крепится к стеблю на выступающем конце

    Овальный: лист овальный, с коротким концом

    Овальный: лист овальный, яйцевидный, с заострённым концом в основании

    Однолопастный: с одним листиком

    Округлый: круглой формы

    Пальчатый: лист разделён на пальцевидные лопасти

    Парноперистый: перистый лист без верхушечного листика

    Перисторассечённый: простой рассечённый лист, у которого сегменты расположены симметрично относительно оси листовой пластины

    Перистый: два ряда листиков

Приложение 1

    Почковидный: лист в форме почки

    Рассечённый: листовая пластинка такого листа имеет вырезы, достигающие более двух третей её полуширины; части листовой пластинки рассечённого листа называются сегментами

    Ромбовидный: лист в форме ромба

    Серповидный: в виде серпа

    Сердцевидный: в виде сердца, лист крепится к стеблю в районе ямочки

    Стреловидный: лист в виде наконечника стрелы, с расширяющимися лопастями в основании

    Триждыперистый: каждый листочек в свою очередь делится на три

    Тройчатый: лист разделён на три листочка

    Шиловидный: в виде шила

    Щитовидный: лист закруглённый, стебель крепится снизу

Край листа

    Цельнокрайный — с гладким краем, без зубцов

    Реснитчатый — с бахромой по краям

    Зубчатый — с зубчиками, как у каштана. Шаг зубчика может быть большой и маленький

    • Округлозубчатый — с волнообразными зубцами, как у бука.

      Мелкозубчатый — с мелкими зубчиками

    Лопастной — изрезанный, с вырезами, не достигающими середины, как у многих дубов

    Пильчатый — с несимметричными зубчиками, направленными вперёд в сторону макушки листа, как у крапивы.

    • Двупильчатый — каждый зубчик имеет более мелкие зубчики

      Мелкопильчатый — с мелкими несимметричными зубчиками

    Выемчатый — с глубокими, волнообразными вырезами, как у многих видов щавеля

    Колючий — с неэластичными, острыми концами, как у некоторых падубов и чертополоха.

Листья бывают простые и сложные. Сложным листом называется такой, черешок которого имеет несколько листовых пластинок. Они прикрепляются к главному черешку своими собственными черешочками, нередко самостоятельно, поодиночке, отпадают и называются листочками. Примерами сложного листа служит лист конопли, люпина, клевера, конского каштана, грецкого ореха. Простой лист имеет одну пластинку. От простого к сложному листу существуют разнообразные переходные формы, различаемые по характеру и степени изрезанности пластинки.

Простые листья по очертанию пластинки бывают овальными, яйцевидными, обратнояйцевидными, почковидными, продолговатыми, ланцетными, мечевидными, линейными и пр.

Если края листовой пластинки не имеют никаких выемок, лист называют целънокрайным. Если выемки по краю листа неглубокие, лист называется цельным. Цельные листья различают по характеру выемок и выступов между ними. Так, если выемки острые, а выступы округленные, лист городчатый (как у шалфея, будры и др.); если выемки клиновидные, а выступы острые, треугольные, лист зубчатый (у бука, лещины и др.); если выступы косоугольные и острые, получается пильчатый лист (у груши).

По форме верхушки пластинки листья бывают: тупые, острые, заостренные и остроконечные.

По форме основания пластинки различают листья клиновидные, сердцевидные, копьевидные, стреловидные и др.

Помимо перечисленных категорий цельного листа, различают еще лопастные, раздельные и рассеченные листья. Лопастным называется лист, у которого вырезы по краям пластинки доходят до одной четверти ее ширины (у дуба), а при большем углублении, если вырезы достигают более четверти ширины пластинки, лист называют раздельным (у мака). Лопасти раздельного листа называются долями. Рассеченным называют лист, у которого вырезы по краям пластинки доходят почти до средней жилки, образуя сегменты пластинки.

Раздельные и рассеченные листья могут быть пальчатые и перистые, дваждыпалъчатые и дваждыперистые и т.д.

Что касается сложных листьев, то среди них различают тройчатосло - ные, палъчатосложные и перистосложные. Если сложный лист состоит из трех листочков, его называют тройчатосложным или тройчатым (у клевера, люцерны, сои, пуэрарии и др.). Если черешочки листочков прикрепляются к главному черешку как бы в одной точке, а сами листочки расходятся радиально, лист называют палъчатосложнъм (у люпина, конопли, конского каштана). Если на главном черешке боковые листочки расположены с обеих сторон по длине черешка, лист называют перистосложным. Если такой лист заканчивается наверху непарным одиночным листочком, получается непарноперистый лист (у эспарцета, белой акации, рябины и др.). Если вместо верхнего одиночного листочка развивается усик (у вики), то лист относится к непарноперистым. Если конечного листочка или усика нет, лист называют парноперистым (у арахиса, рожкового дерева). Иногда у непарноперистого листа все боковые листочки редуцируются и остается только конечный, силь - норазвивающийся непарный листочек, так что лист кажется простым, а не перистым (у апельсина).

Работа выполняется в табличной форме (образец приведен ниже).

3. Таблица выполняется в электронном виде, на листах формата А4, положение страницы – книжное.

4. Задание сдается преподавателю в электронном виде на следующем занятии после выдачи задания!

Таблица описания листьев деревьев и кустарников

Лист и его формы

Основная часть обычного листа – это его пластинка. Листовая пластинка – это расширенное плоское образование, выполняющее функции фотосинтеза, газо- и водообмена. Кроме пластинки листья часто имеют черешок – удлиненную цилиндрическую стеблеподобную часть, с помощью которой пластинка прикрепляется к стеблю. Если черешок есть, лист называют черешковым, а при его отсутствии – сидячим. Нижняя часть листа – его основание – может разрастаться и в виде трубки охватывать стебель. Такое образование называется листовым влагалищем. Довольно часто при основании листа у черешка находятся особые выросты – прилистники. Прилистники бывают парными, различной формы и величины, зеленые или бесцветные, свободные или сросшиеся с черешком. Прилистники могут опадать по мере роста листа или не опадать.

Простыми называют листья, имеющие одну листовую пластинку на черешке, а у сложного листа к одному черешку прикрепляются несколько пластинок, называемых листочками.

Простой лист. Листовая пластинка у простого листа может быть цельной или, напротив, расчлененной, т.е. в той или иной степени изрезанной, состоящей из выступающих частей пластинки и выемок. Для определения характера расчлененности, степени и формы изрезанности листовых пластинок и правильного наименования таких листьев, прежде всего, следует учесть, как распределяются выступающие части пластинки – лопасти, доли, сегменты – по отношению к черешку и к главной жилке листа. Если выступающие части симметричны главной жилке, то такие листья называют перистыми. Если выступающие части выходят как бы из одной точки, листья называются пальчатыми. По глубине вырезов листовой пластинки различают листья: лопастные, если выемки (глубина надрезов) не доходят до половины ширины полупластинки (выступающие части называют лопастями); раздельные, при глубине вырезов, заходящих глубже половины ширины полупластины (выступающие части – доли); рассеченные, при глубине надрезов, доходящих до главной жилки или почти ее касающихся (выступающие части – сегменты).

Сложный лист. Сложные листья по аналогии с простыми называются перистыми и пальчатыми с добавлением слова «сложный». Например, перистосложный, пальчатосложный, тройчатосложный и т.д. Если сложный лист оканчивается одним листочком, лист называется непарноперистосложным. Если же он оканчивается парой листочков, то называется парноперистосложным.

Расчленение пластинки простого листа, так же как и ветвление частей сложного листа, может быть многократным. В этих случаях с учетом порядка ветвления или расчленения говорят о дважды-, трижды-, четыреждыперистых или пальчатых, простых или сложных листьях.

Основные формы листовой пластинки

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: