Строительство, ремонт, дизайн

В последнее время большое распространение получило вещание телевидения на ДМВ. Однако из-за малых мощностей ретрансляторов, специфики распространения ДМВ и низкой чувствительности телевизоров зоны уверенного приема телесигналов небольшие. Приходится применять сложные антенны с большим усилением и малошумящие антенные усилители. Предлагаемый антенный усилитель несложен по конструкции, прост в наладке и имеет следующие параметры:

Полоса усиливаемых частот, . . . . 470...790 МГц Неравномерность АЧХ, . . . . . . . 3 Дб Коэффициент усиления,. . . . . . . 12 Дб Входное сопротивление. . . . . . . 75 Ом Выходное сопротивление. . . . . . 75 Ом Напряжение питания,. . . . . . . . 12 B Потребляемый ток, . . . . . . . . 12 mA

Входная цепь (рис. 1), выполненная в виде Т-образного фильтра верхних частот и состоящая из элементов Cl , C2 , L1 и L2 , обеспечивает согласование усилителя с антенной. Два каскада усиления собраны по схеме с общим эмиттером. Стабилизация режимов транзисторов по постоянному току осуществляется с помощью отрицательных обратных связей через резисторы R1 и R4 . Такая схема стабилизации позволяет непосредственно заземлить эмиттерные выводы транзисторов, что обеспечивает высокий устойчивый коэффициент усиления каскадов. Малые сопротивления резисторов нагрузок каскадов исключают возможность возбуждения усилителя на низких частотах. Питание усилителя осуществляется по сигнальному кабелю напряжением +12В от СКД телевизора, согласно рис. 2. Дроссель L3 и конденсатор С7 предназначены для разделения постоянного напряжения и высокочастотного сигнала. В усилителе постоянное напряжение через резистор R6 питает его каскады, а высокочастотный сигнал через конденсатор С6 подается в кабель снижения.

Усилитель смонтирован на плате размерами 60 x37мм , изготовленной из фольгированного стеклотекстолита толщиной 1,5...2 мм . Транзисторы вставлены в отверстия диаметром 6мм , просверленные в плате, а монтаж выполнен на опорных точках, вырезанных резаком в фольге (рис. 3). Катушка L1 , конденсаторы С1 , С6 и резистор R6 подпаиваются одним концом непосредственно к центральной жиле кабеля. Экранирующий корпус изготавливают из меди толщиной 0,2...0,4 мм . Плата подпаивается в нескольких точках к стенкам корпуса. Экранирующие оплетки кабелей припаиваются непосредственно к корпусу. Вход и выход кабелей из корпуса дополнительно герметизируется клеем “суперцемент” или аналогичным, водостойким.

Фильтр разделения напряжения питания и высокочастотного сигнала конструктивно следует собрать в отдельном медном корпусе (рис. 4). С одной стороны на корпусе укреплено гнездо для подключения кабеля снижения антенны, а с другой - штекер для подключения непосредственно к гнезду антенного входа телевизора. Опорную точку для подведения напряжения питания можно изготовить из стеклянного изолятора выводов бумажного конденсатора МБГЧ-1 или аналогичного.

В усилителе могут быть применены резисторы МЛТ-0,125 , МЛТ-0,25 , конденсаторы КМ , КД , КПК-МН , транзисторы ГТ329, ГТ341, ГТ361, КТ372, дроссель L3 - ДМ 0,1-10 или же двадцать витков провода ПЭЛШО-0,1 намотанных на стержне Ф600 2,74Х12,7 мм . Катушки L1 и L2 бескаркасные, L1 имеет 10 витков провода ПЭЛ-0,5 , а L2 - 2 витка провода ПЭЛ-0,8 , намотка рядовая, на оправке диаметром 5 мм .

Настройка антенного усилителя не вызывает затруднений. Подбором резисторов R1 и R4 устанавливают токи транзисторов VT1 и VT2 соответственно 3 и 5 мА . Конденсатор С2 подстраивают по наилучшему качеству изображения. После настройки усилителя на корпус надевается крышка из меди и пропаивается по всему периметру. Усилитель необходимо установить в непосредственной близости от антенны.

Постановка задачи

Рассмотрим довольно распространенную ситуацию, когда необходимо улучшить качество телевизионного приема в диапазоне ДМВ.

Пусть у нас имеется отдельная антенна дециметрового диапазона, установленная на довольно значительном расстоянии от телевизора вне помещения. Качество приема телевизионных станций в данном диапазоне (450...800 МГц) нас не удовлетворяет и мы хотим его улучшить (заметим, что эти станции все-таки принимаются, хотя и плохо). Вещание в дециметровом диапазоне происходит из той же точки, откуда мы с приемлемым качеством принимаем станции метрового диапазона. Менять местоположение и конструкцию антенны мы не хотим.

Построение развернутой блок-схемы

Во-первых, проанализируем проблему несколько подробнее и для начала попытаемся выяснить основные причины плохого приема сигналов в диапазоне ДМВ, тем более что та же телебашня вещает и в диапазоне МВ, качество сигнала в котором нас вполне устраивает.

Первое, что приходит в голову, -- это низкая эффективность применяемой нами ДМВ-антенны. Однако на практике телевизионные антенны ДМВ обычно имеют гораздо более сложную конструкцию и более эффективны, чем типичные бытовые антенны метрового диапазона. Причина в другом -- энергия излучения телевизионных передатчиков, используемых на телецентре, очень часто ниже в диапазоне ДМВ, чем в диапазоне МВ (это обусловлено, в основном, не столько техническими, сколько организационными факторами: менее "крутым" каналам -- менее "крутые" частоты и технику), а кроме этого, и затухание дециметровых волн в атмосфере гораздо выше. В результате энергия полезного сигнала, принятая антенной и переданная в кабель, очень мала. Дополнительную лепту вносит сам кабель, соединяющий антенну с телевизором. Ведь с увеличением частоты увеличивается и удельное затухание сигнала в кабеле. Так что до телевизора доходит лишь слабенький, забитый шумами сигнал, который уже не может обеспечить надлежащее качество. Выходом из положения является применение антенного усилителя, который повысит мощность полезного сигнала, поступающего в телевизор.

Заметим, что определенное влияние на качество приема имеет чувствительность самого телевизора. Современные телевизоры имеют очень высокую чувствительность, и мы будем исходить из того, что раз уж сигнал не может быть с надлежащим качеством воспроизведен самим телевизором, то и все наши меры по его дополнительному усилению непосредственно перед передачей в телевизор не имеют смысла. Так что усиливать сигнал надо сразу после приема его антенной -- до того, как он будет существенно ослаблен из-за затухания в длинном кабеле. А это означает, что наш усилитель будет находиться там же, где и антенна, -- вне помещения, подвергаясь при этом самым разнообразным природным воздействиям. Все это нам предстоит учесть при проектировании.

Перво-на-перво, нам следует определиться с тем, какое конкретно усиление мы хотим получить от нашего усилителя. Во многом это зависит от длины и типа примененного кабеля, а также от чувствительности телевизора. В большинстве случаев уровень в 10...15 дБ можно считать вполне приемлемым, так что будем стремиться именно к нему.

Теперь наконец мы можем приступить и к построению блок-схемы нашего усилителя. Начнем со входного узла.

Итак, перед нами стоит задача усилить очень слабый высокочастотный сигнал, внеся в него при этом минимум искажений (шумов). По всей видимости, с этой задачей лучше всего справится один из рассмотренных нами усилителей с ОБ. Например, усилитель с внутрикаскадной трансформаторной ООС, изображенный на рис. 5.23. Посмотрим, какие у нас могут возникнуть проблемы.

Усилители с ОБ характеризуются относительно низким по сравнению с каскадами с ОЭ динамическим диапазоном и повышенной склонностью к самовозбуждению. В нашем случае узкий динамический диапазон может стать некоторой преградой. Дело в том, что мощные сигналы, излучаемые телецентром в метровом диапазоне волн, могут попасть на вход усилителя и возбудить его. Чтобы предотвратить это, нам придется включить на входе первого каскада фильтр высоких частот, который будет подавлять нежелательные сигналы и обеспечит устойчивую работу усилителя. Дополнительной функцией такого фильтра станет согласование импедансов между антенным кабелем и входом первого усилительного звена. Все остальные части усилителя мы будем стараться выполнить максимально широкополосными. Это необходимо, во-первых, потому что диапазон ДМВ достаточно широк, а во-вторых, для обеспечения минимального уровня искажений усиливаемого сигнала.

После прохождения первого каскада усиления уровень полезного сигнала уже может оказаться довольно высоким (однако, учитывая наличие ФВЧ, усиление на 10...15 дБ достигнуто не будет). Это означает, что строить последующий каскад также по схеме с ОБ несколько рискованно - придется опять решать проблему динамического диапазона. Поэтому во втором каскаде усилителя применим решение с ОЭ. Например, схему с трансформаторной ООС, представленную на рис. 5.11. Мы опять используем решение с широкополосным трансформатором, поскольку именно оно в данном случае наилучшим образом отвечает нашим требованиям.

Двух каскадов усиления уже достаточно для достижения поставленной задачи (10...15 дБ), и мы можем перейти к следующему вопросу - организации питания и способам задания исходных рабочих точек всех элементов усилителя.

Здесь пришла пора снова вспомнить об условиях, в которых будет эксплуатироваться наш усилитель. А это, во-первых, широкий диапазон температур окружающей среды (-30...+40°С), а во-вторых, значительная удаленность от источника питания (если только мы не станем использовать батарейку, закрепляемую рядом с усилителем). Широкий температурный диапазон означает, что мы должны принять особые меры по стабилизации исходных рабочих точек для всех транзисторов усилителя, а удаленность от источника питания - что из-за длинного шлейфа питания, возможно, проходящего вблизи разнообразных источников наводок, напряжение, подаваемое к усилителю, не будет стабильным. Анализируя условия работы первого каскада, мы неизбежно придем к заключению, что для него высокая стабильность режима по постоянному току - это одно из важнейших требований, к соблюдению которого мы должны приложить максимум усилий. Действительно, от текущего режима работы транзистора по постоянному току довольно сильно зависят такие показатели, как: коэффициент усиления, коэффициент шума, динамический диапазон. А мы никак не можем допустить сколь-либо значительного дрейфа этих параметров (по крайней мере, во входном каскаде нашего усилителя). Таким образом, нам необходимо принять особые меры по обеспечению стабильности исходной рабочей точки в первом каскаде. Требуемую стабильность нельзя обеспечить с помощью таких простых цепей смещения, как подробно рассмотренные нами в главе 3, - мы должны использовать более сложное решение, например один из вариантов с источником тока, показанный на рис. 3.40. При рассмотрении высокочастотных усилителей с ОБ мы уже приводили пример с источником тока (рис. 5.31), им и воспользуемся.

Требования к стабильности исходной рабочей точки во втором каскаде оказываются не столь жесткими, и мы можем слегка "расслабиться" и применить, например, схему эмиттерно-базовой стабилизации с ООС по току и напряжению с дополнительным термокомпенсирующим диодом (рис. 3.18 и рис. 3.23).

Поскольку напряжение питания может оказаться нестабильным, нам придется встроить в усилитель простейший стабилизатор напряжения, постаравшись и в нем обеспечить высокую температурную устойчивость.

Итак, мы определились с деталями исполнения обоих усилительных звеньев и системы питания. Осталось только пару слов сказать о входном фильтре. Он может быть достаточно простым, поскольку у нас нет надобности в особенно высокой избирательности. На практике удобнее всего оказывается обычный Т-образный фильтр 3-го порядка (два конденсатора и одна индуктивность), вносящий относительно небольшое затухание в полезный сигнал.

Наконец мы можем построить полную блок-схему нашего будущего усилителя. Она представлена на рис. 6.4.

Рис.6.4.

Выбор элементной базы и построение полной принципиальной схемы

В нашем случае выбор элементной базы в первую очередь состоит в выборе двух маломощных высокочастотных транзисторов, которые мы будем использовать в основных усилительных звеньях. Основное требование к этим транзисторам - высокая граничная частота коэффициента передачи тока базы (если мы хотим обеспечить равномерную АЧХ во всем диапазоне 450...800 МГц и иметь минимум проблем при настройке усилителя, то нам необходимо выбирать транзисторы с граничной частотой порядка 4.,.8 ГГц).

С точки зрения соотношения цена/качество вполне приемлемыми оказываются приборы типа КТ3101А-2. В выбранном частотном диапазоне они обеспечивают коэффициент шума на уровне менее 2 дБ, а граничная частота коэффициента передачи тока составляет порядка 4,5 ГГц. Конечно, мы можем использовать и более высокочастотные транзисторы, например КТЗ 115 или КТЗ 132 (ГГц), однако это в большинстве случаев уже не является оправданным с ценовой точки зрения.

Рис. 6.5.

Приведем здесь некоторые важнейшие справочные данные о транзисторе КТ3101А-2 (в дальнейшем они нам понадобятся для выбора режима работы по постоянному току).

* Статический коэффициент передачи тока в схеме с ОЭ (ст) При =1В, = 5мА:

Т=+25°С 35...300;

Т=-60°С 17,5...300;

Т=+125°С 35...500.

  • * Граничная частота коэффициента передачи тока базы при = 5В, = 10мА (типовое значение): ...4,5 ГГц.
  • * Минимальный коэффициент шума при

2 В, = 2 мА, f= 1 ГГц

  • (типовое значение): 1,9 дБ.
  • * Оптимальный коэффициент усиления по мощности при

2 В, = 2 мА, f = 1 ГГц (типовое значение): 7 дБ

* Обратный ток коллектора при = 15 В:

Т=+25°С……………………………………...0,5 мкА

T=+125°С…………….……………………….…5мкА

* Максимальное постоянное напряжение

коллектор-база:…………………………………..……15 В

* Максимальный постоянный ток коллектора

и эмиттера:………………………………………..….20 мА

* Максимальная постоянная рассеиваемая мощность

коллектора при Т +45°С:………………………...100 мВт

Из представленных данных видно, что оптимальное (по соотношению сигнал/шум) значение коэффициента усиления по мощности достигается при = 2 В, = 2 мА. Было бы логичным выбрать именно эти значения для режима работы транзистора первого каскада. Однако вспомним о том, что нам необходимо иметь относительно широкий динамический диапазон. Поэтому несколько изменим эти показатели в сторону увеличения и выберем для первого каскада: = 4 В, = = 4 мА. Динамический диапазон второго каскада должен быть еще шире, и, хотя здесь мы уже применяем схему с ОЭ, нам придется еще раз увеличить все электрические показатели по постоянному току. Для второго каскада выберем: = 6 В, = = 10 мА. Теперь нам осталось определиться с элементами в источнике тока и стабилизаторе напряжения. Это низкочастотные узлы, в которых нет смысла применять какие-то особенные транзисторы. Поэтому договоримся использовать широко распространенные приборы КТ3102 (когда нам нужен транзистор п-р-п-типа) или КТ3107 (когда нам нужен транзистор р-п-р-типа). Такой же принцип (дешевизна и широкое распространение) будем использовать и при выборе всех остальных элементов устройства (диоды, стабилитроны и т.п.).

В качестве внешнего источника питания применим простейший маломощный сетевой источник бытового назначения (от калькулятора, телефона, плейера и т.п.) с выходным напряжением 12 В. Для подачи питающего напряжения в усилитель можно было бы использовать сам антенный кабель. Но мы упростим себе жизнь, если предусмотрим отдельный шлейф для напряжения питания (не надо включать ряд согласующих элементов, увеличивающих к тому же потери сигнала).

Приняв во внимание все изложенные выше рассуждения, мы наконец можем построить полную принципиальную схему нашего усилителя. Она представлена на рис. 6.6.

Казалось бы, теперь пора перейти к следующему шагу проектирования - расчету номиналов элементов. Однако правильнее будет проанализировать полученную принципиальную схему на предмет оптимального построения согласующих цепей, расположенных на стыках отдельных звеньев. Ведь мы брали просто типовые схемные решения и не рассматривали вопросы правильного согласования их между собой.

Рис.6.6.

Внимательное рассмотрение первого звена показывает, что резисторы выполняют схожие в чем-то функции, и мы можем слегка модифицировать схему, совместив

эти два резистора. При этом образуется дополнительный контур обратной связи по напряжению. В то же время для сохранения баланса в каскаде нам придется ввести дополнительный резистор в коллекторную цепь транзистора VT2 Итоговая схема модифицированного таким образом звена представлена на рис. 6.7.

Теперь обратимся к вопросу согласования импедансов в точке соединения первого и второго каскадов усилителя. Вспомним, что входное сопротивление усилителя с ОЭ, примененного во втором каскаде, довольно велико (> 1 кОм). В свою очередь, выходное сопротивление первого каскада с ОБ в рассматриваемом случае составляет десятки ом (~ 50 Ом). Для достижения Согласования мы можем прибегнуть к нескольким методам. Например, задав индуктивность дросселя L3 такой, чтобы в рабочем диапазоне частот его эквивалентное сопротивление приблизительно равнялось выходному сопротивлению первого каскада. Однако диапазон рабочих частот усилителя весьма широк и эквивалентные сопротивления 13 на краях этого диапазона окажутся сильно различающимися, так что достичь полного согласования будет нельзя. Самое простое в данном случае - заменить дроссель L3 на обыкновенный резистор, чье сопротивление не зависит от частоты и будет оставаться одинаковым при любом входном сигнале. Вместо L3 мы также можем использовать дополнительный согласующий трансформатор на входе второго каскада (аналогично рис. 5.27). И наконец, наиболее радикальное решение - модификция трансформатора Тр1 с целью получения более высокого выходного импеданса Тут стоит отметить, что избежать всех этих сложностей с согласованием мы могли бы в том случае, если бы вместо схемы с ОЭ стали использовать во втором каскаде схему с ОБ, аналогичную той, что мы применили в первом каскаде усилителя. Практика показывает, что в данном случае итоговая настройка усилителя была бы несколько проще. Но здесь мы руководствовались только теоретическими критериями и выбрали иное решение. Будем придерживаться нашего выбора и далее, однако обратим внимание читателя на то, что при проектировании любых устройств немалое значение играет и практический опыт. Что же касается конкретного усилителя, то при его повторении можно использовать как решение с ОЭ, так и решение с ОБ, оставляя неизменными цепи смещения и режимы работы транзисторов по постоянному току.

Нельзя назвать построенную нами схему идеальной. Однако вспомним, что при ее составлении мы опирались только на такие схемотехнические решения, работа которых нами подробно изучена в предыдущих главах настоящей книги. Тем не менее эта схема вполне работоспособна, и мы можем приступить к ее окончательному расчету.

Расчет параметров всех элементов

Нет необходимости расписывать данный пункт слишком подробно. Тем более что для расчетов мы будем использовать компьютер, а интерес для нас представляют только окончательные результаты. Имеет смысл пояснить только некоторые базовые положения.

При расчете входного фильтра мы будем полагать частоту среза равной ~ 400 Мгц. Сама методика расчета подобных фильтров широко описана в литературе , и здесь мы ее излагать не станем.

Емкости блокировочных и фильтрующих конденсаторов будем выбирать достаточно большими (до разумного предела), так чтобы их эквивалентное сопротивление в рабочем диапазоне частот оказывалось очень малым (< 1 Ом)2.

Окончательная принципиальная схема усилителя со всеми номиналами элементов представлена на рис. 6.8.

В заключение следует сказать несколько слов об особенностях конструктивного исполнения трансформаторов и других индуктивностей, а также определить их намоточные данные. Сразу же отметим, что мы будем придерживаться именно такой конструкции, которая была подробно описана нами при рассмотрении свойств высокочастотных усилительных каскадов с трансформаторными обратными связями (разделы 5.2, 5.3). Тем не менее это не единственный и не самый оптимальный вариант исполнения широкополосных трансформаторов для того диапазона частот, в котором будет работать наш усилитель. Основной проблемой здесь является наличие ферритового сердечника. Из-за разнообразных технологических ограничений использование таких сердечников на частотах более 100...200 МГц приводит к значительному росту потерь в трансформаторах. Именно поэтому мы должны применять максимально высокочастотный феррит (7ВН, 20ВН или ЗОВН). Практика показывает, что при хорошей настройке и качественной сборке более или менее приемлемое усиление на частотах до 500...600 Мгц можно получить и при применении сердечников из феррита 50ВН. Что же касается самих намоточных данных, то приводимые на рис. 6.8 значения следует рассматривать как ориентировочные. Настройка данного усилителя, собственно, и сводится к экспериментальному подбору количества витков в обмотках трансформаторов, плотности скручивания проводов в этих обмотках и, наконец, размещения этих обмоток на тороидальном сердечнике с целью получить максимальное усиление при отсутствии искажений. В трансформаторах можно использовать любой надежно изолированный медный провод диаметром 0,15...0,25 мм.

Катушка входного фильтра L1 бескорпусная, наматывается медным (желательно посеребренным) проводом диаметром 0,3...0,8 мм на оправке диаметром 6 мм. Количество витков - 6.

Дроссели 12,13 могут иметь различное конструктивное исполнение. Например, можно использовать обычные резисторы с высоким сопротивлением (~1 Мом), на которые наматывается тонким медным изолированным проводом 20...50 витков, а концы провода подпаиваются к выводам резистора.

Рис.6.8.

Разработка конструктивного исполнения, сборка и настройка


Рис.6.9. Размещение элементов на плате антенного усилителя

Прежде всего отметим, что печатная плата двухсторонняя. С той стороны, где располагаются компоненты, - это в основном экранирующий слой, соединяемый с землей схемы. К его поверхности припаиваются экранирующие перегородки из луженой жести, а также те выводы деталей, которые на схеме заведены на землю. На обратной стороне платы располагаются проводники, по которым не протекают высокочастотные сигналы, т.е. они относятся только к цепям смещения. Выводы всех деталей в высокочастотной части укорачиваются до минимума. При их пайке следует соблюдать максимальную осторожность, чтобы не вывести из строя перегревом. Перед изготовлением широкополосных трансформаторов следует учесть их расположение относительно других компонентов на плате и соответственным образом разместить на них обмотки



Рис.6.10.

Настройку усилителя начинают с регулировки стабилизатора и установки заданных режимов работы транзисторов по постоянному току. Выходное напряжение стабилизатора на транзисторах VТЗ, VТ4 в очень незначительных пределах может регулироваться резистором R7, в основном же оно зависит от напряжения стабилизации стабилитрона VD2. Применение указанного на схеме прибора Д814А обеспечивает выходное напряжение порядка 10 В. Если же его заменить, например на КС 168, то выходное напряжение составит около 9 В. Для нашей схемы важно, чтобы это напряжение было стабильным, его же абсолютная величина может выбираться из соображений удобства в диапазоне 8... 15 В. При изменении указанного на схеме значения 10 В следует откорректировать номинал резистора R9 так, чтобы напряжение на конденсаторе С11 при заданном токовом режиме (20 мА) составляло 8 В. Напряжение, подаваемое от внешнего источника питания, должно быть выше выходного напряжения стабилизатора (10 В) не менее чем на 1,5...2 В. При установке режимов работы по постоянному току в транзисторах основных усилительных каскадов может потребоваться подбор номинала сопротивления R3. Все остальные регулировки осуществляются только подстроечными резисторами R1 и R12.

Дальнейшая настройка усилителя сводится к подбору параметров широкополосных трансформаторов. От их конструктивного исполнения зависят практически все характеристики схемы. Значение имеют не только общее количество витков и глубина обратной связи (задается коэффициентом трансформации), но и особенности скручивания проводников, а также размещение обмоток на сердечнике.

Практика показывает, что в трансформаторе Тр1 лучше вообще не скручивать проводники обмоток, а просто разместить их на сердечнике вплотную или на небольшом расстоянии друг от друга. Глубина обратной связи в первом каскаде также не должна быть слишком сильной. При возникновении самовозбуждения можно пропорционально увеличить количество витков во всех обмотках (относительно указанного на схеме) в 1,5...3 раза. В трансформаторе Тр2, наоборот, следует скручивать проводники как можно плотнее. Глубина обратной связи подбирается здесь исходя из условия сохранения устойчивости усилителя. Общее количество витков также может быть пропорционально увеличено. Параметры выходной обмотки для достижения хорошего согласования с нагрузкой требуют подбора (скорее всего придется уменьшать количество витков в ней). Настройку входного фильтра можно произвести непосредственно наблюдая качество телевизионного изображения.

Следует заметить, что разработанная нами схема не является оптимальной для выбранного частотного диапазона и получить от нее требуемое усиление на ДМВ может оказаться довольно трудной задачей. Основная проблема уже называлась выше - значительное затухание высокочастотных сигналов на широкополосных трансформаторах. В то же время ее нельзя назвать и совершенно бесполезной. При минимальной модификации или исключении входного фильтра наш усилитель без каких-либо дополнительных доработок может использоваться и в метровой части диапазона (50...400 МГц). В этом случае его настройка значительно упрощается, поскольку основным требованием остается только отсутствие самовозбуждения, а вполне приличное усиление обеспечивается даже при сильном рассогласовании.

Однако, такая информация больше подходит для лиц, имеющих определенную радиотехническую подготовку.
Мы же представим Вам совсем не дорогое и качественное оборудование из рекомендуемого нами перечня.

Абонентские усилители

Абонентские усилители АЕ-108STm+ разработаны специально под удобство DVB-T2 приема. Усилители характеризуется той особенностью, что имеют возможность подачи питания на мачтовые усилители напряжением +12 В. Часто на практике такая функция является очень важной (особенно для DVB-T2 приема ).

В большинстве случаях достаточно использовать только один абонентский усилитель (т.е. без мачтового усилителя). Оптимальный коэффициент усиления при достаточно высоком выходном уровне гарантирует отсутствие каких-либо искажений, а малые габариты при удобстве крепления обеспечили высокую популярность в качестве абонентских усилителей. Их обычно устанавливают около силовой розетки 220 В/50 Гц, максимально близко расположенной от антенны (от кабельного спуска).

Абонентский усилитель АЕ-108STm+ ("Телемак", г. Саратов)

Особенности
  • Только диапазон ДМВ (под сигналы DVB-T2);
  • Регулировка коэффициента передачи (10 дБ);
  • Только 1 вход (ДМВ);
  • Низкий коэффициент шума (3 дБ – тип.);
  • Наличие двух выходов (удобство одновременного подключения 2-х телевизоров);
  • Светодиодная индикация наличия сетевого питания (~220 В/50 Гц);
  • Светодиодная индикация подачи питания на мачтовый усилитель или активную антенну (+12 В/50 мА);
  • Наличие кнопки включения/отключения питания мачтового усилителя или активной антенны (например, Rhombus);
  • Относительно высокий уровень выходных сигналов, применительно к квартирной разводке (не менее 82 дБмкВ на 60 каналов).
  • Малые массогабаритные характеристики.

Абонентский усилитель AD 420 Plus DC ("Fagor", Испания)

Особенности
  • Высокая степень экранирования благодаря металлическому корпусу.
  • Наличие импульсного источника питания уменьшает потребление и внутреннюю температуру и тем самым увеличивает срок службы усилителя.
  • Современный дизайн и малый размер (107х48х138 мм) значительно облегчают инсталляцию.
  • Независимая регулировка усиления в диапазонах ДМВ и МВ.

*) По желанию Заказчика возможна поставка усилителя при отсутствии питания +12 В (мод. AD 420 Plus).

Технические параметры абонентских усилителей

Производитель Диапазон рабочих частот, МГц Число входов/выходов Коэффициент усиления, дБ Коэффициент шума, дБ Подача питания на мачтовый усилитель, В Кнопка включения дистанционного питания +12 В Максимальный ток нагрузки, мA Защита от перегрузок Тип ВЧ коннекторов Напряжение питания, В Мощность потребления, Вт Габариты, мм
Параметры АЕ-108STm+
AD 420 Plus
Цена, € 26 27,5/27
«Телемак» (г. Саратов) «Fagor» (Испания)
470-862 (ДМВ) 40-318 (МВ)
470-862 (ДМВ)
1/2
22 28 (МВ), 22 (ДМВ)
2х98 2х100
3,5 7 (МВ), 5 (ДМВ)
+12 +12/-
есть нет/-
50 100/-
есть двойная защита
(по входу + БП)
F-типа (75 Ом)
187...242 В/50 Гц
4 1,5
130х72х44 107х48х138
Мачтовые усилители

Мачтовый усилитель АА-102В4,5 (+12 В)

Идеальное решение для большинства практических случаев из-за очень малого коэффициента шума (2 дБ), малого коэффициента усиления (16 дБ) и низкой стоимости. В усилитель уже встроен диапазонный фильтр ДМВ (470-862 МГц). Питание усилителя осуществляется по кабелю снижения от абонентского усилителя АЕ-108ST+ или AD 420 Plus DC . Таким образом, никаких дополнительных устройств в виде источников питания уже не потребуется.

Мачтовые усилители ДМВ диапазона серии FT (+12 В)

Мачтовые усилители серии FT предназначены для усиления телевизионных сигналов ДМВ диапазона. Усилители выполнены в металлическом корпусе с F-разъемами. Питание +12 В к усилителям подается по телевизионному кабелю. При эксплуатации усилителей вне помещения необходима дополнительная влагозащита.

Усилитель 21-69 Delta обладает высоким уровнем заграждения вне рабочего диапазона и низким коэффициентом шума.

Мачтовый усилитель AA-102D (+5 В)

Малогабаритный малошумящий антенный усилитель (Телемак, г. Саратов) с питанием непосредственно от любого DVB-T2 ресивера напряжением +5 В

Мачтовый усилитель UHF-020 (+5 В)

Мачтовый усилитель с питанием непосредственно от любого DVB-T2 ресивера напряжением +5 В (все типы DVB-T2 ресиверов имеют возможность подачи питания +5 В на его антенный вход). При эксплуатации усилителя вне помещения необходима дополнительная влагозащита.

Мачтовые усилители: UHF-015, UHF-027 (+5 В- +12 В)

UHF-015 UHF-027
Цена: 21 € Цена: 22,5 €
  1. ВЧ вход, к антенне
  2. ВЧ выход, вход питания
  3. Индикатор напряжения питания
  1. ВЧ вход, к антенне
  2. ВЧ выход, вход питания
  3. Индикатор напряжения питания
  4. Переключатель усиления

Мачтовые усилители: UHF-015, UHF-027 от компании DSR (Голландия) обладают такими уникальными особенностями как:

  • предельно низкий коэффициент шума (0,8 дБ-UHF-015, 1 дБ-UHF-027). Такое низкое значение коэффициента шума позволяет обеспечить предельно «дальнобойный» прием сигналов DVB-T2;
  • (4,5-12 В), что позволяет использовать его в самых различных конфигурациях;
  • модель UHF-027 : переключаемое усиления 14/17 дБ.

Важной особенностью является и тот факт, что мачтовые усилители данного типа установлены в пластмассовый влагозащищенный корпус, предназначенный для непосредственного крепления к мачте. Крепление осуществляется прилагаемой в комплекте обвязкой.

Мачтовые усилители: AB 010L, AB 012 (+5 В...+12 В) от компании Terra (Литва)

AB 010L AB 012
Цена: 22,5 € Цена: 23,5 €
  1. ВЧ вход, к антенне
  2. ВЧ выход, вход питания
  3. Индикатор напряжения питания
  1. ВЧ вход, к антенне
  2. 3 ВЧ выхода, вход питания
  3. Переключатель усиления 7/22 дБ
  4. Индикатор напряжения питания
Особенности
  • низкий коэффициент шума 1 дБ. Такое значение коэффициента шума позволяет обеспечить предельно «дальнобойный» прием сигналов DVB-T2;
  • усилители работают в очень широком диапазоне питающих напряжений (4,5-12 В) ;
  • модель AB 010L имеет встроенный фильтр LTE;
  • у модели AB 012 переключаемое усиления 7/22 дБ;
  • усилители установлены в пластмассовый влагозащищенный корпус.

Технические параметры мачтовых усилителей +12 В

Параметры АА-102 В4,5 FT 21-69 DELTA
Цена, € 9,6 7 8
Производитель Телемак Планар
Диапазон рабочих частот, МГц 470-862 (ДМВ)
Число входов/выходов 1/1
Коэффициент усиления, дБ 16 22 30
Коэффициент шума, дБ 2 4 3
Макс. уровень выходного сигнала (IMD3=60 дБ, 2 канала) 102 105 105
Тип ВЧ коннекторов F-типа (75 Ом)
Напряжение питания, В 12
Ток потребления, мА 20 50 60
Габариты, мм 50х45х15 55х42х16 55х42х16

Технические параметры мачтовых усилителей +5 В

Параметры UHF-015 UHF-027 AB 010L AB 012
Цена, € 10 9 21 22,5 22,5 23,5
Производитель Телемак DSR Terra
Диапазон рабочих частот, МГц 470-862 (ДМВ) 470-790 (ДМВ) 470-862 (ДМВ)
Наличие дополнительного гермокорпуса нет есть
Число входов/выходов 1/1 1/3
Коэффициент усиления, дБ 22 22 15 14/27
(коммутация)
14 7/22
(коммутация)
Коэффициент шума, дБ 2 2,5 0,8 1
Макс. уровень выходного сигнала (IMD3=60 дБ, 2 канала) 98 106 98 108 98 103
Тип ВЧ коннекторов F-типа (75 Ом)
Напряжение питания, В 5 4,5-12
Ток потребления, мА 20 50 30 60 30 60
Габариты, мм 55x17x17 58х17х17 89х107х43 89х107х43 90х107х43 90х107х43

Когда-то хорошая телевизионная антенна была дефицитом, покупные качеством и долговечностью, мягко говоря, не отличались. Сделать антенну для «ящика» или «гроба» (старого лампового телевизора) своими руками считалось показателем мастерства. Интерес к самодельным антеннам не угасает и в наши дни. Ничего странного тут нет: условия приема ТВ кардинально изменились, а производители, полагая, что в теории антенн ничего существенно нового нет и не будет, чаще всего приспосабливают к давно известным конструкциям электронику, не задумываясь над тем, что главное для любой антенны – ее взаимодействие с сигналом в эфире.

Что изменилось в эфире?

Во-первых, почти весь объем ТВ-вещания в настоящее время осуществляется в диапазоне ДМВ . Прежде всего из экономических соображений, в нем намного упрощается и удешевляется антенно-фидерное хозяйство передающих станций, и, что еще более важно – потребность в его регулярном обслуживании высококвалифицированными специалистами, занятыми тяжелым, вредным и опасным трудом.

Второе – ТВ-передатчики теперь покрывают своим сигналом практически все более-менее населенные места , а развитая сеть связи обеспечивает подачу программ в самые глухие углы. Там вещание в обитаемой зоне обеспечивают маломощные необслуживаемые передатчики.

Третье, изменились условия распространения радиоволн в городах . На ДМВ промышленные помехи просачиваются слабо, но железобетонные многоэтажки для них – хорошие зеркала, многократно переотражающие сигнал вплоть до его полного затухания в зоне, казалось бы, уверенного приема.

Четвертое – ТВ-программ в эфире сейчас очень много, десятки и сотни . Насколько это множество разнообразно и содержательно – другой вопрос, но рассчитывать на прием 1-2-3 каналов ныне бессмысленно.

Наконец, получило развитие цифровое вещание . Сигнал DVB T2 – штука особенная. Там, где он еще хоть чуть-чуть, на 1,5-2 дБ, превышает шумы, прием отличный, как ни в чем ни бывало. А чуть дальше или в стороне – нет, как отрезало. К помехам «цифра» почти не чувствительна, но при рассогласовании с кабелем или фазовых искажениях в любом месте тракта, от камеры до тюнера, картинка может рассыпаться в квадратики и при сильном чистом сигнале.

Требования к антеннам

В соответствии с новыми условиями приема, изменились и основные требования к ТВ-антеннам:

  • Такие ее параметры, как коэффициент направленного действия (КНД) и коэффициент защитного действия (КЗД) ныне определяющего значения не имеют: современный эфир очень грязный, и по малюсенькому боковому лепестку диаграммы направленности (ДН), хоть какая-то помеха, да пролезет, и бороться с ней нужно уже средствами электроники.
  • Взамен особое значение приобретает собственный коэффициент усиления антенны (КУ). Антенна, хорошо «облавливающая» эфир, а не смотрящая на него сквозь маленькую дырочку, даст запас мощности принятого сигнала, позволяющий электронике очистить его от шумов и помех.
  • Современная телевизионная антенна, за редчайшими исключениями, должна быть диапазонной, т.е. ее электрические параметры должны сохраняться естественным образом, на уровне теории, а не втискиваться в приемлемые рамки путем инженерных ухищрений.
  • ТВ-антенна должна согласовываться в кабелем во всем своем рабочем диапазоне частот без дополнительных устройств согласования и симметрирования (УСС).
  • Амплитудно-частотная характеристика антенны (АЧХ) должна быть возможно более гладкой. Резким выбросам и провалам непременно сопутствуют фазовые искажения.

Последние 3 пункта обусловлены требованиями приема цифровых сигналов. Настроенные, т.е. работающие теоретически на одной частоте, антенны можно «растянуть» по частоте, напр. антенны типа «волновой канал» на ДМВ с приемлемым отношением сигнал/шум захватывают 21-40 каналы. Но их согласование с фидером требует применения УСС, которые либо сильно поглощают сигнал (ферритовые), либо портят фазовую характеристику на краях диапазона (настроенные). И «цифру» такая антенна, отлично работающая на «аналоге», будет принимать плохо.

В связи с этим, из всего великого антенного многообразия, в данной статье будут рассмотрены антенны для телевизора, доступные для самостоятельного изготовления, следующих типов:

  1. Частотнонезависимая (всеволновая) – не отличается высокими параметрами, но очень проста и дешева, ее можно сделать буквально за час. За городом, где эфир почище, она вполне сможет принимать цифру или достаточно мощный аналог не небольшом удалении от телецентра.
  2. Диапазонная логопериодическая. Ее, образно выражаясь, можно уподобить рыболовецкому тралу, уже при облавливании сортирующему добычу. Она тоже довольно проста, идеально согласуется с фидером во всем своем диапазоне, абсолютно не меняет в нем параметры. Техпараметры – средние, поэтому более подойдет для дачи, а в городе в качестве комнатной.
  3. Несколько модификаций зигзагообразной антенны , или Z-антенны. В диапазоне МВ это весьма солидная конструкция, требующая немалого умения и времени. Но на ДМВ она вследствие принципа геометрического подобия (см. далее), настолько упрощается и съеживается, что вполне может быть использована как высокоэффективная комнатная антенна при почти любых условиях приема.

Примечание: Z-антенна, если использовать предыдущую аналогию – частый бредень, сгребающий все, что есть в воде. По мере замусоривания эфира она было вышла из употребления, но с развитием цифрового ТВ вновь оказалась на коне – во всем своем диапазоне она так же отлично согласована и держит параметры, как «логопедка».

Точное согласование и симметрирование почти всех описанных далее антенн достигается благодаря прокладке кабеля через т.наз. точку нулевого потенциала. К ней предъявляются особые требования, о которых подробнее будет сказано далее.

О вибраторных антеннах

В полосе частот одного аналогового канала можно передать до нескольких десятков цифровых. И, как уже сказано, цифра работает при ничтожном отношении сигнал/шум. Поэтому в очень удаленных от телецентра, куда сигнал одного-двух каналов еле добивает, местах, для приема цифрового ТВ может найти применение и старый добрый волновой канал (АВК, антенна волновой канал), из класса вибраторных антенн, так что в конце уделим несколько строк и ей.

О спутниковом приеме

Делать самому спутниковую антенну нет никакого смысла. Головку и тюнер все равно нужно покупать, а за внешней простотой зеркала кроется параболическая поверхность косого падения, которую с нужной точностью может выполнить далеко не всякое промышленное предприятие. Единственное, что под силу самодельщикам – настроить спутниковую антенну, об этом .

О параметрах антенн

Точное определение упомянутых выше параметров антенн требует знания высшей математики и электродинамики, но понимать их значение, приступая к изготовлению антенны, нужно. Поэтому дадим несколько грубые, но все же поясняющие смысл определения (см. рис. справа):

  • КУ – отношение принятой антенной на основной (главный) лепесток ее ДН мощности сигнала, к его же мощности, принятой в том же месте и на той же частоте ненаправленной, с круговой, ДН, антенной.
  • КНД – отношение телесного угла всей сферы к телесному углу раскрыва главного лепестка ДН, в предположении, что его сечение – круг. Если главный лепесток имеет разные размеры в разных плоскостях, сравнивать нужно площадь сферы и площадь сечения ею главного лепестка.
  • КЗД – отношение принятой на главный лепесток мощности сигнала к сумме мощностей помех на той же частоте, принятой всеми побочными (задним и боковыми) лепестками.

Примечания:

  1. Если антенна диапазонная, мощности считаются на частоте полезного сигнала.
  2. Поскольку совершенно ненаправленных антенн не бывает, за такую принимают полуволновой линейный диполь, ориентированный по направлению электрического вектора поля (по его поляризации). Его КУ считается равным 1. ТВ программы передаются с горизонтальной поляризацией.

Следует помнить, что КУ и КНД не обязательно взаимосвязаны. Есть антенны (напр. «шпионская» – однопроводная антенна бегущей волны, АБВ) с высокой направленностью, но единичным или меньшим усилением. Такие смотрят вдаль как бы сквозь диоптрический прицел. С другой стороны, существуют антенны, напр. Z-антенна, у которых невысокая направленность сочетается со значительным усилением.

О тонкостях изготовления

Все элементы антенн, по которым протекают токи полезного сигнала (конкретно – в описаниях отдельных антенн), должны соединяться между собой пайкой или сваркой. В любом сборном узле на открытом воздухе электрический контакт скоро нарушится, и параметры антенны резко ухудшатся, вплоть до полной ее негодности.

Особенно это касается точек нулевого потенциала. В них, как говорят специалисты, наблюдается узел напряжения и пучность тока, т.е. его наибольшее значение. Ток при нулевом напряжении? Ничего удивительного. Электродинамика ушла от закона Ома на постоянном токе так же далеко, как Т-50 от воздушного змея.

Места с точками нулевого потенциала для цифровых антенн лучше всего выполнять гнутыми из цельного металла. Небольшой «ползучий» ток на сварке при приеме аналога на картинке, скорее всего, не скажется. Но, если принимается цифра на границе шумов, то тюнер из-за «ползучки» может не увидеть сигнала. Который при чистом токе в пучности дал бы стабильный прием.

О пайке кабеля

Оплетка (да и центральная жила нередко) современных коаксиальных кабелей делаются не из меди, а из стойких к коррозии и недорогих сплавов. Паяются они плохо и, если долго греть, можно пережечь кабель. Поэтому паять кабели нужно 40-Вт паяльником, легкоплавким припоем и с флюс-пастой вместо канифоли или спиртоканифоли. Пасты жалеть не нужно, припой сразу же растекается по жилкам оплетки только под слоем кипящего флюса.

Виды антенн

Всеволновая

Всеволновая (точнее, частотнонезависимая, ЧНА) антенна показана на рис. Она – две треугольных металлических пластинки, две деревянных рейки, да много медных эмалированных проволок. Диаметр проволоки значения не имеет, а расстояние между концами проволок на рейках – 20-30 мм. Зазор между пластинами, к которым припаяны другие концы проволок – 10 мм.

Примечание: вместо двух металлических пластин лучше взять квадрат из одностороннего фольгированного стеклотекстолита в вырезанными по меди треугольниками.

Ширина антенны равна ее высоте, угол раскрыва полотен – 90 градусов. Схема прокладки кабеля показана там же на рис. Точка, отмеченная желтым – точка квази-нулевого потенциала. Припаивать в ней оплетку кабеля к полотну не нужно, достаточно туго подвязать, для согласования хватит емкости между оплеткой и полотном.

ЧНА, растянутая в окне шириной 1,5 м, принимает все метровые и ДЦМ каналы почти со всех направлений, кроме провала около 15 градусов в плоскости полотна. В этом ее преимущество в местах, где возможен прием сигналов от разных телецентров, не нужно вращать. Недостатки – единичный КУ и нулевой КЗД, поэтому в зоне действия помех и вне зоны уверенного приема ЧНА не годится.

Примечание : есть и другие типы ЧНА, напр. в виде двухвитковой логарифимической спирали. Она компактнее ЧНА из треугольных полотен в том же диапазоне частот, поэтому иногда используется в технике. Но в быту это преимуществ не дает, сделать спиральную ЧНА сложнее, с коаксиальным кабелем согласовать труднее, поэтому не рассматриваем.

На основе ЧНА был создан очень популярный когда-то веерный вибратор (рога, рогулька, рогатка), см. рис. Его КНД и КЗД что-то около 1,4 при довольно гладкой АЧХ и линейной ФЧХ, так что для цифры он подошел бы и сейчас. Но – работает только на МВ (1-12 каналы), а цифровое вещание идет на ДМВ. Впрочем, на селе, при подъеме на 10-12 м, может сгодиться для приема аналога. Мачта 2 может быть из любого материала, но крепежные планки 1 – из хорошего ненамокающего диэлектрика: стеклотекстолита или фторопласта толщиной не менее 10 мм.

Пивная всеволновка

Всеволновая антенна из пивных банок явно не плод похмельных галлюцинаций спившегося радиолюбителя. Это действительно очень хорошая антенна на все случаи приема, нужно только сделать ее правильно. Причем исключительно простая.

В основе ее конструкции следующее явление: если увеличивать диаметр плеч обычного линейного вибратора, то рабочая полоса его частот расширяется, а прочие параметры остаются неизменными. В дальней радиосвязи с 20-х годов используется т.наз. диполь Надененко, основанный на этом принципе. А пивные банки по размерам как раз подходят в качестве плеч вибратора на ДМВ. В сущности, ЧНА и есть диполь, плечи которого неограниченно расширяются до бесконечности.

Простейший пивной вибратор из двух банок годится для комнатного приема аналога в городе даже без согласования с кабелем, если его длина не более 2 м, слева на рис. А если собрать из пивных диполей вертикальную синфазную решетку с шагом в полволны (справа на рис.), согласовать ее и отсимметрировать с помощью усилителя от польской антенны (о нем речь еще пойдет), то благодаря сжатию главного лепестка ДН по вертикали такая антенна даст и хороший КУ.

Усиление «пивнухи» можно еще увеличить, добавив заодно КЗД, если сзади нее поместить экран из сетки на расстоянии, равном половине шага решетки. Монтируется пивная решетка на мачте из диэлектрика; механические связи экрана с мачтой – тоже диэлектрические. Остальное ясно из след. рис.

Примечание: оптимальное количество этажей решетки – 3-4. При 2-х выигрыш в усилении будет небольшим, а большее трудно согласовать с кабелем.

Видео: изготовление простейшей антенны из пивных банок

«Логопедка»

Логопериодическая антенна (ЛПА) представляет собой собирающую линию, к которой попеременно подключаются половинки линейных диполей (т.е. куски проводника длиной в четверть рабочей волны), длина и расстояние между которыми меняются в геометрической прогрессии с показателем меньше 1, в центре на рис. Линия может быть как настроенной (с КЗ на противоположном от места подключения кабеля конце), так и свободной. ЛПА на свободной (ненастроенной) линии для приема цифры предпочтительнее: она выходит длиннее, но ее АЧХ и ФЧХ гладкие, а согласование с кабелем не зависит от частоты, поэтому на ней мы и остановимся.

ЛПА может быть изготовлена на любой, до 1-2 ГГц, наперед заданный диапазон частот. При изменении рабочей частоты ее активная область из 1-5 диполей смещается вперед-назад по полотну. Поэтому, чем ближе показатель прогрессии к 1, и соответственно меньше угол раскрыва антенны, тем большее усиление она даст, но при этом возрастает ее длина. На ДМВ от наружной ЛПА можно добиться 26 дБ, а от комнатной – 12 дБ.

ЛПА, можно сказать, по совокупности качеств идеальная цифровая антенна , поэтому остановимся на ее расчете несколько подробнее. Основное, что нужно знать, что увеличение показателя прогрессии (тау на рис.) дает прирост усиления, а уменьшение угла раскрыва ЛПА (альфа) увеличивает направленность. Экран для ЛПА не нужен, он на ее параметры почти не влияет.

Расчет цифровой ЛПА имеет особенности:

  1. Начинают его, ради запаса по частоте, со второго по длине вибратора.
  2. Затем, взяв обратную величину от показателя прогрессии, рассчитывают самый длинный диполь.
  3. После самого короткого, исходя из заданного диапазона частот, диполя, добавляют еще один.

Поясним на примере. Допустим, наши цифровые программы лежат в диапазоне 21-31 ТВК, т.е. в 470-558 МГц по частоте; длины волн соответственно – 638-537 мм. Также допустим, что нам нужно принимать слабый зашумленный сигнал вдали от станции, поэтому берем максимальный (0,9) показатель прогрессии и минимальный (30 градусов) угол раскрыва. Для расчета понадобится половина угла раскрыва, т.е. 15 градусов в нашем случае. Раскрыв можно еще уменьшить, но длина антенны непомерно, по котангенсу, возрастет.

Считаем В2 на рис: 638/2 = 319 мм, а плечи диполя будут по 160 мм, до 1 мм можно округлять. Расчет нужно будет вести, пока не получится Bn = 537/2 = 269 мм, и затем просчитать еще один диполь.

Теперь считаем А2 как В2/tg15 = 319/0,26795 = 1190 мм. Затем, через показатель прогрессии, А1 и В1: А1 = А2/0,9 = 1322 мм; В1 = 319/0,9 = 354,5 = 355 мм. Далее последовательно, начиная с В2 и А2, умножаем на показатель, пока не дойдем до 269 мм:

  • В3 = В2*0,9 = 287 мм; А3 = А2*0,9 = 1071 мм.
  • В4 = 258 мм; А4 = 964 мм.

Стоп, у нас уже меньше 269 мм. Проверяем, уложимся ли по усилению, хотя и так ясно, что нет: чтобы получить 12 дБ и более, расстояния между диполями не должны превышать 0,1-0,12 длины волны. В данном случае имеем для В1 А1-А2 = 1322 – 1190 = 132 мм, а это 132/638 = 0,21 длины волны В1. Нужно «подтянуть» показатель к 1, до 0,93-0,97, вот и пробуем разные, пока первая разница А1-А2 не сократится вдвое и более. Для максимума в 26 дБ нужно расстояние между диполями в 0,03-0,05 длины волны, но не менее 2-х диаметров диполя, 3-10 мм на ДМВ.

Примечание: остаток линии за самым коротким диполем, обрезаем, он нужен только для расчета. Поэтому реальная длина готовой антенны получится всего около 400 мм. Если наша ЛПА наружная, это очень хорошо: можно уменьшить раскрыв, получив большую направленность и защиту от помех.

Видео: антенна для цифрового ТВ DVB T2

О линии и мачте

Диаметр трубок линии ЛПА на ДМВ – 8-15 мм; расстояние между их осями – 3-4 диаметра. Учтем еще, что тонкие кабели-«шнурки» дают на ДМВ такое затухание на метр, что все антенно-усилительные ухищрения сойдут на нет. Коаксиал для наружной антенны нужно брать хороший, диаметром по оболочке от 6-8 мм. Т.е., трубки для линии должны быть тонкостенными цельнотянутыми. Подвязывать кабель к линии снаружи нельзя, качество ЛПА резко упадет.

Крепить наружную ЛПА к мачте нужно, разумеется, за центр тяжести, иначе малая парусность ЛПА превратится в огромную и трясущуюся. Но соединять металлическую мачту прямо с линией тоже нельзя: нужно предусмотреть диэлектрическую вставку не менее 1,5 м длиной. Качество диэлектрика большой роли тут не играет, пойдет проолифленное и покрашенное дерево.

Об антенне «Дельта»

Если ДМВ ЛПА согласуется с кабелем усилителем (см. далее, о польских антеннах), то к линии можно пристроить плечи метрового диполя, линейные или веерные, как у «рогатки». Тогда получим универсальную МВ-ДМВ антенну отличного качества. Такое решение использовано в популярной антенне «Дельта», см. рис.

Антенна “Дельта”

Зигзаг в эфире

Z-антенна с рефлектором дает усиление и КЗД такие же, как ЛПА, но главный лепесток ее ДН более чем вдвое шире по горизонтали. Это может быть важно на селе, когда есть прием ТВ с разных направлений. А дециметровая Z-антенна имеет небольшие в плане размеры, что существенно для комнатного приема. Но ее рабочий диапазон теоретически не безграничен, перекрытие по частоте при сохранении приемлемых для цифры параметров – до 2,7.

Конструкция Z-антенны МВ показана на рис; красным выделен путь прокладки кабеля. Там же слева внизу – более компактный кольцевой вариант, в просторечии – «паук». По нему хорошо видно, что Z-антенна родилась как комбинация ЧНА с диапазонным вибратором; есть в ней кое-что и от ромбической антенны, которая в тему не вписывается. Да, кольцо «паука» не обязательно должно быть деревянным, это может быть обруч из металла. «Паук» принимает 1-12 МВ каналы; ДН без рефлектора – почти круговая.

Классический же зигзаг работает или на 1-5, или на 6-12 каналах, но для его изготовления нужны только деревянные рейки, медный эмалированный провод c d = 0,6-1,2 мм да несколько обрезков фольгированного стеклотекстолита, поэтому даем размеры, через дробь для 1-5/6-12 каналов: А = 3400/950 мм, Б, С = 1700/450 мм, b = 100/28 мм, В = 300/100 мм. В точке Е – нулевой потенциал, здесь нужно оплетку спаять с металлизированной опорной пластиной. Размеры рефлектора, тоже 1-5/6-12: А = 620/175 мм, Б = 300/130 мм, Г = 3200/900 мм.

Диапазонная Z-антенна с рефлектором дает усиление в 12 дБ, настроенная на один канал – 26 дБ. Чтобы на основе диапазонного зигзага построить одноканальный, нужно взять сторону квадрата полотна по середине ее ширины в четверть длины волны и пересчитать пропорционально все прочие размеры.

Народный зигзаг

Как видим, Z-антенна МВ – довольно сложное сооружение. Но ее принцип показывает себя во всем блеске на ДМВ. Z-антенну ДМВ с емкостными вставками, сочетающая в себе достоинства «классики» и «паука», сделать настолько просто, что она еще в СССР заслужила звание народной, см. рис.

Материал – медная трубка или алюминиевый лист толщиной от 6 мм. Боковые квадратики цельные из металла или затянутые сеткой, или закрытые жестянкой. В двух последних случаях их нужно пропаять по контуру. Коаксиал резко гнуть нельзя, поэтому ведем его так, чтобы он дошел до бокового угла, а затем не выходил за пределы емкостной вставки (бокового квадратика). В т. А (точка нулевого потенциала) оплетку кабеля электрически соединяем с полотном.

Примечание: алюминий не паяется обычными припоями и флюсами, поэтому алюминиевая «народная» годится для наружной установки только после герметизации электрических соединений силиконом, в ней ведь все на винтах.

Видео: пример двойной треугольной антенны

Волновой канал

Антенна волновой канал (АВК), или антенна Удо-Яги из доступных для самостоятельного изготовления способна дать наибольшие КУ, КНД и КЗД. Но принимать цифру на ДМВ она может только на 1 или 2-3 соседних каналах, т.к. относится к классу остро настроенных антенн. Ее параметры за пределами частоты настройки резко ухудшаются. АВК рекомендуется применять с очень плохих условиях приема, причем для каждого ТВК делать отдельную. К счастью, это не очень сложно – АВК проста и дешева.

В основе работы АВК – «сгребание» электромагнитного поля (ЭМП) сигнала к активному вибратору. Внешне небольшая, легкая, с минимальной парусностью, АВК может иметь эффективную апертуру в десятки длин волн рабочей частоты. Укороченные и поэтому имеющие емкостный импеданс (полное сопротивление) директоры (направители) направляют ЭМП к активному вибратору, а рефлектор (отражатель), удлиненный, с индуктивным импедансом, отбрасывает к нему то, что проскочило мимо. Рефлектор в АВК нужен всего 1, но директоров может быть от 1 до 20 и более. Чем их больше, тем выше усиление АВК, но уже полоса ее частот.

От взаимодействия с рефлектором и директорами волновое сопротивление активного (с которого снимается сигнал) вибратора падает тем больше, чем ближе к максимуму усиления настроена антенна, и согласование с кабелем теряется. Поэтому активный диполь АВК делают петлевым, его исходное волновое сопротивление не 73 Ом, как у линейного, а 300 Ом. Ценой его снижения до 75 Ом АВК с тремя директорами (пятиэлементную, см. рис. справа) удается настроить почти что на максимум усиления в 26 дБ. Характерная для АВК ДН в горизонтальной плоскости приведена на рис. в начале статьи.

Элементы АВК соединяются со стрелой в точках нулевого потенциала, поэтому мачта и стрела могут быть любыми. Очень хорошо подходят пропиленовые трубы.

Расчет и настройка АВК под аналог и цифру несколько различны. Под аналог волновой канал нужно рассчитывать на несущую частоту изображения Fи, а под цифру – на середину спектра ТВК Fс. Почему так – здесь объяснять, к сожалению, нет места. Для 21-го ТВК Fи = 471,25 МГц; Fс = 474 МГц. ДМВ ТВК расположены вплотную друг к другу через 8 МГц, поэтому их настроечные частоты для АВК рассчитываются просто: Fn = Fи/Fс(21 ТВК) + 8(N – 21), где N – номер нужного канала. Напр. для 39 ТВК Fи = 615,25 МГц, а Fс = 610 МГц.

Чтобы не записывать множество цифр, удобно размеры АВК выражать в долях длины рабочей волны (она считается как Л = 300/F, МГц). Длину волны принято обозначать малой греческой буквой лямбда, но, поскольку в интернете греческого алфавита по умолчанию нет, мы условно обозначим ее большой русской Л.

Размеры оптимизированной под цифру АВК, по рис., таковы:

  • Р = 0,52Л.
  • В = 0,49Л.
  • Д1 = 0,46Л.
  • Д2 = 0,44Л.
  • Д3 = 0,43л.
  • a = 0,18Л.
  • b = 0,12Л.
  • c = d = 0,1Л.

Если не нужно большого усиления, но важнее уменьшение габаритов АВК, то Д2 и Д3 можно убрать. Все вибраторы выполняются из трубки или прутка диаметром 30-40 мм для 1-5 ТВК, 16-20 мм для 6-12 ТВК и 10-12 мм на ДМВ.

АВК требует точного согласования с кабелем. Именно небрежным выполнением устройства согласования и симметрирования (УСС) объясняется большинство неудач любителей. Самое простое УСС для АВК – U-петля из того же коаксиального кабеля. Ее конструкция ясна из рис. справа. Расстояние между сигнальными клеммами 1-1 140 мм для 1-5 ТВК, 90 мм для 6-12 ТВК и 60 мм на ДМВ.

Теоретически длина колена l должна быть в половину длины рабочей волны, так и значится в большинстве публикаций в интернете. Но ЭМП в U-петле сосредоточено внутри заполненного изоляцией кабеля, поэтому нужно обязательно (для цифры – особенно обязательно) учитывать его коэффициент укорочения. Для 75-омных коаксиалов он колеблется в пределах 1,41-1,51, т.е. l нужно брать от 0,355 до 0,330 длины волны, и брать точно, чтобы АВК была АВК, а не набором железок. Точное значение коэффициента укорочения всегда есть в сертификате на кабель.

В последнее время отечественная промышленность начала выпускать перенастраиваемые АВК для цифры, см. рис. Идея, надо сказать, отличная: передвигая элементы по стреле, можно точно настроить антенну под местные условия приема. Лучше, конечно, чтобы это делал специалист – поэлементная настройка АВК взаимозависима, и дилетант непременно запутается.

О «полячках» и усилителях

У многих пользователей польские антенны, ранее прилично принимавшие аналог, цифру брать отказываются – рвется, а то и вовсе пропадает. Причина, прошу прощения, похабно-коммерческий подход к электродинамике. Стыдно порой бывает за коллег, сляпавших такое «чудо»: АЧХ и ФЧХ похожи то ли на ежа-псориазника, то ли лошадиный гребень с выломанными зубьями.

Единственно, что хорошо в «полячках» – их усилители для антенны. Собственно, они и не дают сим изделиям бесславно помереть. Усилители «поячек», во-первых, широкополосные малошумящие. И, что еще важнее – с высокоомным входом. Это позволяет при той же напряженности ЭМП сигнала в эфире подать на вход тюнера в несколько раз большую его мощность, что дает возможность электронике «выдрать» цифру из совсем уж безобразных шумов. Кроме того, вследствие большого входного сопротивления польский усилитель – идеальное УСС для любых антенн: что ни цепляй ко входу, на выходе – точно 75 Ом без отраженки и ползучки.

Однако при очень плохом сигнале, вне зоны уверенного приема, польский усилитель уже не тянет. Питание на него подается по кабелю, и развязка по питанию отнимает 2-3 дБ отношения сигнал/шум, которых может как раз и не хватить, чтобы цифра пошла в самой глубинке. Тут нужен хороший усилитель ТВ сигнала с раздельным питанием. Располагаться он будет, скорее всего, возле тюнера, а УСС для антенны, если оно требуется, придется делать отдельно.

Схема такого усилителя, показавшая почти 100% повторяемость даже при выполнении начинающими радиолюбителями, приведена на рис. Регулировка усиления – потенциометром Р1. Дроссели развязки L3 и L4 – стандартные покупные. Катушки L1 и L2 выполняются по размерам на монтажной схеме справа. Они входят в состав полосовых фильтров сигнала, поэтому небольшие отклонения их индуктивности не критичны.

Однако топологию (конфигурацию) монтажа нужно соблюдать точно! И точно также обязателен металлический экран (metal shield), отделяющий выходные цепи от прочей схемы.

С чего начать?

Мы надеемся, что и опытные мастера найдут в этой статье некоторое количество полезных им сведений. А новичкам, еще не чувствующим эфир, начинать лучше всего с пивной антенны. Автор статьи, отнюдь и отнюдь не дилетант в данной области, в свое время был немало удивлен: простейшая «пивнушка» с ферритовым согласованием, как оказалось, и МВ берет не хуже испытанной «рогатки». А что стоит сделать ту и другую – см. текст.

(2 оценок, среднее: 4,00 из 5)

Сказал(а):

А на крыше был приём удовлетворительный на Полячку. До телецентра у меня километров 70 – 80. Вот такие у меня проблемы. С балкона удаётся поймать с 30 каналов штук 3 – 4 и то с “кубиками”. Я иной раз смотрю телеканалы с интернета на компьютере в своей комнате, а жена в своей на телевизор не может нормально смотреть свои любимые каналы. Соседи советуют провести кабельное, но за него надо платить каждый месяц, а я уже и так плачу за интернет, а пенсия не резиновая. Всё её тянем, тянем и на всё не хватает.

Пётр Копитоненко сказал(а):

Поставить антенну на крыше дома не получается, соседи ругаются, что я хожу и ломаю рубероидное покрытие крыши и у них потом протекает потолок. Вообще то я очень “благодарен” тому экономисту, который получил себе премию за экономию.Придумал убрать с домов дорогостоящую двускатную крышу и заменить её плоской крышей прикрытой плохим рубероидом. Экономист получил денежки за экономию, а люди на последних этажах теперь всю жизнь мучаются. Вода течёт им на головы и на кровати. Они каждый год меняют рубероид, а он за сезон приходит в негодность. В морозную погоду он даёт трещины и дождевая вода и снеговая течёт в квартиру, даже если по крыше никто и не ходит!!!

Сергей сказал(а):

Приветствую!
Спасибо за статью, а автор-то кто (подписи не вижу)?
ЛПА по приведённой выше методике работает отлично, ДМВ 30 и 58 каналы. Проверено в городе (отражённый сигнал) и за городом, расстояния до передатчика (1 кВт) соответственно: 2 и 12 км примерно. Практика показала, что в диполе “В1” острой необходимости нет, а вот ещё один диполь перед самым коротким сказывается существенно, судя по интенсивности сигнала в %. Особенно в условиях города, где надо ловить (в моём случае) отражённый сигнал. только я сделал антенну с “КЗ”, так получилось, просто не оказалось подходящего изолятора.
В общем, рекомендую.

Василий сказал(а):

ИМХО: народ ищущий антенну для приема ЭЦТВ, забудьте про ЛПА. Эти широкодиапазонные антенны были созданы во второй половине 50-х годов (!!) прошлого века для того, чтобы находясь на берегах советской Прибалтики ловить забугорные телецентры. В журналах того времени это стыдливо называли «сверхдальним приемом». Ну очень любили на Рижском взморье ночью смотреть шведское порно…

В плане назначения тоже самое могу сказать про «двойные, тройные и т.д. квадраты», а также любые «зигзаги».

По сравнению с аналогичным по диапазону и усилению «волновым каналом» ЛПА более громоздки и материалоемки. Расчет ЛПА сложен, замысловат и похож скорее на гадание и подгонку результатов.

Если в вашем регионе ведется вещание ЭЦТВ на соседних ДМВ каналах (у меня 37-38) то лучшее решение разыскать в сети книгу: Капчинский Л.М. Телевизионные антенны (2-е издание, 1979) и изготовить «волновой канал» для группы каналов ДМВ (если у Вас вещание выше 21-41 каналов, то придется пересчитывать) описанный на стр 67 и далее (рис. 39, табл 11).
Если до передатчика 15 – 30км антенну можно упростить, сделав ее четырех – пять элементной, просто не устанавливая директоры Д, Е и Ж.

Для совсем близких передатчиков рекомендую комнатные антенны, кстати в той же книге на стр. 106 – 109 приведены чертежи широкодиапазонных комнатных «волнового канала» и ЛПА. «Волновой канал» визуально меньше, проще и изящней при большем усилении!

Нажимая кнопку «Добавить комментарий», я соглашаюсь с сайта.

Несмотря на бурное развитие спутникового и кабельного телевидения, прием эфирного телевещания все еще остается актуальным, например, для мест сезонного проживания. Совсем не обязательно для этой цели покупать готовое изделие, домашняя дециметровая (ДМВ) антенна может быть собрана своими руками. Прежде чем переходить к рассмотрению конструкций, кратко расскажем, почему выбран именно этот диапазон телевизионного сигнала.

Почему именно ДМВ?

Есть две весомые причины, чтобы остановить свой выбор на конструкциях этого типа:

  1. Все дело в том, что большинство каналов транслируется в этом диапазоне, поскольку упрощается конструкция ретрансляторов, а это дает возможность установить большее число необслуживаемых маломощных передатчиков и тем самым расширить зону покрытия.
  2. Для трансляции «цифры» выбран этот диапазон.

Комнатная антенна для ТВ «Ромб»

Эта простая, но, в то же время, надежная конструкция, была одной из самых распространенных в эпоху расцвета эфирного телевещания.

Рис. 1. Простейшая самодельная Z-антенна, известная под названиями: «Ромб», «Квадрат» и «Народный зигзаг»

Как видно из эскиза (B рис. 1), устройство представляет собой упрощенный вариант классического зигзага (Z-конструкции). Для увеличения чувствительности, ее рекомендуется оборудовать емкостными вставками («1» и «2»), а также рефлектором («А» на рис.1). Если уровень сигнала вполне приемлем, делать это не обязательно.

В качестве материала можно использовать алюминиевые, медные, а также латунные трубки или полосы шириной 10-15 мм. Если планируется устанавливать конструкцию на улице, то лучше отказаться от алюминия, поскольку он подвержен коррозии. Емкостные вставки изготавливаются из фольги, жести или металлической сетки. После установки, они пропаиваются по контуру.

Кабель укладывается так, как продемонстрировано на рисунке, а именно: не имел резких изгибов и не покидал пределов боковой вставки.

Дециметровая антенна с усилителем

В местах, где в относительной близости не расположена мощная ретрансляционная башня, можно поднять уровень сигнала до приемлемого значения при помощи усилителя. Ниже представлена принципиальная схема устройства, которое может использоваться практически с любой антенной.


Рис. 2. Схема антенного усилителя для ДМВ диапазона

Перечень элементов:

  • Резисторы: R1 – 150 кОм; R2 – 1 кОм; R3 – 680 Ом; R4 – 75 кОм.
  • Конденсаторы: С1 – 3,3 пФ; С2 – 15 пФ; С3 – 6800 пФ; С4, С5, С6 – 100 пФ.
  • Транзисторы: VT1, VT2 – ГТ311Д (можно заменить на: KT3101, KT3115 и KT3132).

Индуктивность: L1 – представляет собой бескаркасную катушку диаметром 4 мм, намотанную медным проводом Ø 0,8 мм (необходимо сделать 2,5 витка); L2 и L3 – высокочастотные дроссели 25 мкГн и 100 мкГн, соответственно.

Если схема собрана правильно, мы получим усилитель со следующими характеристиками:

  • полоса пропускания от 470 до 790 МГц;
  • коэффициенты усиления и шума – 30 и 3 дБ, соответственно;
  • величина выходного и входного сопротивления устройства соответствует кабелю RG6 – 75 Ом;
  • устройство потребляет порядка 12-14 мА.

Обратим внимание на способ подачи питания, оно осуществляется непосредственно по кабелю.

Данный усилитель может работать с самыми простыми конструкциями, сделанными из подручных средств.

Комнатная антенна из пивных банок

Несмотря на необычность конструкции, она вполне работоспособна, поскольку представляет собой классический диполь, тем более, что размеры стандартной банки отлично подходят для плеч вибратора дециметрового диапазона. Если устройство установлено в комнате, то в этом случае даже не обязательно согласование с кабелем, при условии, что он не будет длиннее двух метров.


Обозначения:

  • А – две банки объемом 500 мг (если взять жестяные, а не алюминиевые, то можно припаять кабель, а не использовать саморезы).
  • B – места крепления экранирующей оплетки кабеля.
  • С – центральная жила.
  • D – место крепления центральной жилы
  • E – кабель, идущий от телевизора.

Плечи этого экзотического диполя необходимо закрепить на держателе, сделанного из любого изоляционного материала. В качестве такового можно использовать подручные вещи, например, пластиковую вешалку для одежды, перекладину швабры или кусок деревянного бруса соответствующих размеров. Расстояние между плечами от 1 до 8 см (подбирается эмпирическим путем).

Основные преимущества конструкции – быстрое изготовление (10 – 20 минут) и вполне приемлемое качество «картинки», при условии достаточной мощности сигнала.

Делаем антенну из медной проволоки

Существует конструкция, значительно проще предыдущего варианта, для которой потребуется только кусок медной проволоки. Речь идет о рамочной петлевой антенне узкого диапазона. Такое решение имеет несомненные преимущества, поскольку помимо своего основного назначения, устройство играет роль селективного фильтра, снижающего помехи, что позволяет уверенно принимать сигнал.


Рис.4. Простая рамочная ДМВ антенна петлевого типа для приема цифрового ТВ

Для данной конструкции необходимо рассчитать длину петли, чтобы сделать это, нужно узнать частоту «цифры» для вашего региона. Например, в Санкт-Петербурге она транслируется на 586 и 666 МГц. Формула расчета будет следующей: L R = 300/f, где L R – это длина петли (результат представлен в метрах), а f – усредненный частотный диапазон, для Питера это значение будет равно 626 (сумма 586 и 666, деленная на 2). Теперь рассчитываем L R , 300/626 = 0,48, значит, длина петли должна быть 48 сантиметров.

Если взять толстый RG-6 кабель, где имеется фольга в оплетке, то его можно использовать вместо медной проволоки для изготовления петли.

Теперь расскажем, как собирается конструкция:

  • Отмеряется и отрезается кусок медной проволоки (или RG6 кабеля) длиной, равной L R .
  • Сворачивается петля подходящего диаметра, после чего к ее концам припаивается кабель, идущий к ресиверу. Если вместо медной проволоки используется RG6, то предварительно снимается изоляция с его концов, примерно на 1-1,5 см (центральную жилу очищать не надо, она в процессе не участвует).
  • Петля устанавливается на подставку.
  • На кабель к ресиверу накручивается F разъем (штекер).

Заметим, несмотря на простоту конструкции, она наиболее эффективна для приема «цифры», при условии, что правильно проведены расчеты.

Комнатная антенна МВ и ДМВ своими руками

Если помимо ДМВ есть желание принимать и МВ, можно собрать простую мультиволновку, ее чертеж с размерами представлен ниже.

Для усиления сигнала в данной конструкции используется готовый блок SWA 9, если возникли проблемы с его приобретением, можно использовать самодельное устройство, схема которого была приведена выше (см. рис. 2).

Важно соблюдать угол между лепестками, выход за пределы указанного диапазона существенно отражается на качестве «картинки».

Несмотря на то, что такое устройство значительно проще логопериодической конструкции с волновым каналом, тем не менее, оно показывает неплохие результаты, если сигнал достаточной мощности.

Антенна восьмерка для цифрового ТВ своими руками

Рассмотрим еще один распространенный вариант конструкции для приема «цифры». В основу положена классическая схема для ДМВ диапазона, из-за своей формы получившей название «Восьмерка» или «Зигзаг».


Рис. 6. Эскиз и реализация цифровой восьмерки

Размеры конструкции:

  • внешние стороны ромба (А) – 140 мм;
  • внутренние стороны (В) – 130 мм;
  • расстояние до рефлектора (С) – от 110 до 130 мм;
  • ширина (D) – 300 мм;
  • шаг между прутьями (Е) – от 8 до 25 мм.

Место подключения кабеля в точках 1 и 2.Требования к материалу такие же, как у конструкции «Ромб», о которой рассказывалось в начале статьи.

Самодельная антенна для DBT T2

Собственно, все перечисленные выше примеры способны принимать DBT T2, но для разнообразия приведем эскиз еще одной конструкции, называемой в народе «Бабочка».


В качестве материала можно использовать пластины из меди, латуни, алюминия или дюрали. Если конструкцию планируется устанавливать на улице, то последние два варианта не подходят.

Итог: на каком варианте остановиться?

Как ни странно, но самый простой вариант наиболее действенный, поэтому «петля» лучше всего подходит для приема «цифры» (рис. 4). Но, если требуется принимать и другие каналы в дециметровом диапазоне, то лучше остановиться на «Зигзаге» (рис. 6).

Антенна для телевизора должна быть направлена в сторону ближайшего активного ретранслятора, чтобы выбрать нужное положение, следует вращать конструкцию, пока мощность сигнала не станет удовлетворительной.

Если, не смотря на наличие усилителя и рефлектора, качество «картинки» оставляет желать лучшего, можно попробовать установить конструкцию на мачту.


В этом случае необходимо обязательно установить молниезащиту, но это уже тема другой статьи.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: