Строительство, ремонт, дизайн

В зависимости от числа потребителей, их потребностей в тепловой энергии, а также требований к качеству и бесперебойности теплоснабжения для определенных категорий абонентов тепловые сети выполняются радиальными (тупиковыми) или кольцевыми.

Тупиковая схема (рисунок) является наиболее распространенной. Она применяется при обеспечении тепловой энергией города, квартала или поселка от одного источника – теплоэлектроцентрали или котельной. По мере удаления магистрали от источника уменьшаются диаметры теплопроводов 1, упрощаются конструкция, состав сооружений и оборудование на тепловых сетях в соответствии со снижением тепловой нагрузки. Для этой схемы характерно то, что при аварии магистрали абоненты, подключенные к тепловой сети после места аварии, не обеспечиваются тепловой энергией.

Для повышения надежности обеспечения потребителей 2 тепловой энергией между смежными магистралями устраивают перемычки 3, которые позволяют при аварии какой-либо магистрали переключать подачу тепловой энергии. Согласно нормам проектирования тепловых сетей, устройство перемычек обязательно, если мощность магистралей 350 МВт и более. В этом случае диаметр магистралей, как правило, 700 мм и более. Наличие перемычек частично исключает основной недостаток этой схемы и создает возможность бесперебойного теплоснабжения потребителей. В аварийных условиях допускается частичное снижение подачи тепловой энергии. Например, согласно Нормам проектирования, перемычки рассчитывают на обеспечение 70 %-ной суммарной тепловой нагрузки (максимального часового расхода на отопление и вентиляцию и среднечасового на горячее водоснабжение).

В развивающихся районах города резервирующие перемычки предусматривают между смежными магистралями независимо от тепловой мощности, но в зависимости от очередности развития. Перемычки предусматривают также и между магистралями в тупиковых схемах при теплоснабжении района от нескольких источников теплоты (ТЭЦ, районных и квартальных котельных 4), что повышает надежность теплоснабжения. Кроме того, в летний период при работе одной или двух котельных на нормальном режиме можно отключать несколько котельных, работающих с минимальной нагрузкой. При этом наряду с повышением КПД котельных создаются условия для своевременного проведения профилактического и капитального ремонтов отдельных участков тепловой сети и собственно котельных. На крупных ответвлениях (см. рисунок) предусматриваются секционирующие камеры 5. Для предприятий, не допускающих перерыва в подаче тепловой энергии, предусматривают схемы тепловых сетей с двусторонним питанием, местные резервные источники или кольцевые схемы.


Кольцевая схема (рисунок) предусматривается в крупных городах. Для устройства таких тепловых сетей требуются большие капитальные вложения по сравнению с тупиковыми. Достоинство кольцевой схемы – наличие нескольких источников, благодаря чему повышается надежность теплоснабжения и требуется меньшая суммарная резервная мощность котельного оборудования. При увеличении стоимости кольцевой магистрали снижаются капитальные затраты на строительство источников тепловой энергии. Кольцевая магистраль 1 подключена к трем ТЭЦ, потребители 2 через центральные тепловые пункты 6 присоединены к кольцевой магистрали по тупиковой схеме. На крупных ответвлениях предусмотрены секционирующие камеры 5. Промышленные предприятия 7 также присоединены по тупиковой схеме.

Бесканальная прокладка теплопроводов по конструкции тепловой изоляции подразделяется на засыпную, сборную, сборно-литую и монолитную. Основной недостаток бесканальной прокладки – повышенная просадка и наружная коррозия теплопроводов, а также увеличенные теплопотери в случае нарушения гидроизоляции теплоизолирующего слоя. В значительной мере недостатки бесканальных прокладок тепловых сетей устраняются при использовании теплогидроизоляции на основе полимербетонных смесей.

Теплопроводы в каналах укладывают на подвижные или неподвижные опоры. Подвижные опоры служат для передачи собственного веса теплопроводов на несущие конструкции. Кроме того, они обеспечивают перемещение труб, происходящее вследствие изменения их длины при изменении их длинны при изменении температуры теплоносителя. Подвижные опоры бывают скользящие и катковые.

Скользящие опоры используют в тех случаях, когда основание под опоры может быть сделано достаточно прочным для восприятия больших горизонтальных нагрузок. В противном случае устанавливают катковые опоры, создающие меньшие горизонтальные нагрузки. Поэтому при прокладке трубопроводов больших диаметров в тоннелях, на каркасах или мачтах следует ставить катковые опоры.

Неподвижные опоры служат для распределения термических удлинений теплопровода между компенсаторами и для обеспечения равномерной работы последних. В камерах подземных каналов и при надземных прокладках неподвижные опоры выполняют в виде металлических конструкций, сваренных или соединенных на болтах с трубами. Эти конструкции заделывают в фундаменты, стены и перекрытия каналов.

Для восприятия температурных удлинений и разгрузки теплопроводов от температурных напряжений на теплосети устанавливают радиальные (гибкие и волнистые шарнирного типа) и осевые (сальниковые и линзовые) компенсаторы.

Гибкие компенсаторы П - и S - образные изготовляют из труб и отводов (гнутых, крутоизогнутых и сварных) для теплопроводов диаметром от 500 до 1000 мм. Такие компенсаторы устанавливают в непроходных каналах, когда невозможен осмотр проложенных теплопроводов, а также в зданиях при бесканальной прокладке. Допустимый радиус изгиба труб при изготовлении компенсаторов составляет 3,5…4,5 наружного диаметра трубы.

С целью увеличения компенсирующей способности гнутых компенсаторов и уменьшения компенсационных напряжений обычно их предварительно растягивают. Для этого компенсатор в холодном состоянии растягивается в основании петли, с тем чтобы при подаче горячего теплоносителя и соответствующем удлинении теплопровода плечи компенсатора оказались в положении, при котором напряжения будут минимальные.

Сальниковые компенсаторы имеют небольшие размеры, большую компенсирующую способность оказывать незначительное сопротивление протекающей жидкости. Их изготовляют односторонними и двусторонними для труб диаметром от 100 до 1000 мм. Сальниковые компенсаторы состоят из корпуса с фланцем на уширенной передней части. В корпус компенсатора вставлен подвижный стакан с фланцем для установки компенсатора на трубопроводе. Чтобы сальниковый компенсатор не пропускал теплоноситель между кольцами, в промежутке между корпусом и стаканом укладывают сальниковую набивку. Сальниковую набивку вжимают фланцевым вкладышем с помощью шпилек, ввинчиваемых в корпус компенсатора. Компенсаторы крепят к неподвижным опорам.

Камера для установки задвижек на тепловых сетях изображена на рисунке. При подземных прокладках теплосетей для обслуживания запорной арматуры устраивают подземные камеры 3 прямоугольной формы. В камерах прокладывают ответвления 1 и 2 сети к потребителям. Горячая вода в здание подается по теплопроводу, укладываемому с правой стороны канала. Подающий 7 и обратный 6 теплопроводы устанавливают на опоры 5 и покрывают изоляцией. Стены камер выкладывают из кирпича, блоков или панелей, перекрытия сборные – из железобетона в виде ребристых или плоских плит, дно камеры – из бетона. Вход в камеры через чугунные люки. Для спуска в камеру под люками в стене заделывают скобы или устанавливают металлические лестницы. Высота камеры должна быть не менее 1800 мм. Ширину выбирают с таки расчетом, чтобы расстояния между стенами и трубами были не менее 500 м.

Вопросы для самоконтроля:

1. Что называют тепловыми сетями?

2. Как классифицируются тепловые сети?

3. В чем преимущества и недостатки кольцевой и тупиковой сетей?

4. Что называют теплопроводом?

5. Назовите способы прокладывания тепловых сетей.

6. Назовите назначение и виды изоляции теплопроводов.

7. Назовите трубы, из которых монтируют тепловые сети.

8. Назовите назначение компенсаторов.

Подготовленный теплоноситель (пар определенного давления или вода, нагретая до заданной температуры) подается по тепловым сетям к потребителям теплоты. Тепловая сеть состоит из теплопроводов, т. е. соединенных сваркой стальных труб, тепловой изоляции, запорной и регулировочной арматуры, насосных подстанций, авторегуляторов, компенсаторов тепловых удлинений, дренажных и воздухоспускных устройств, подвижных и неподвижных опор, камер обслуживания и строительных конструкций.

В настоящее время тепловые сети выполняются большей частью двухтрубными, состоящими из подающего и обратного теплопроводов для водяных сетей и паропровода с конденсатопроводом для паровых сетей.

Схема тепловой сети определяется размещением источников теплоты (ТЭЦ или районных котельных) по отношению к району теплового потребления, характером тепловой нагрузки и видом теплоносителя. Схема сети должна обеспечивать надежность и экономичность эксплуатации; протяженность сети должна быть минимальной, а конфигурация по возможности простой.

Пар в качестве теплоносителя используется главным образом для технологических нагрузок промышленных предприятий. Основная нагрузка паровых сетей обычно концентрируется в сравнительно небольшом количестве узлов, которыми являются цехи промышленных предприятий. Поэтому удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки, как правило, невелика. Когда по характеру технологического процесса допустимы кратковременные (до 24 ч) перерывы в подаче пара, наиболее экономичным и в то же время достаточно надежным решением служит прокладка однотрубного паропровода с конденсатопроводом.

Более сложной задачей считается выбор схемы водяных тепловых сетей, поскольку их нагрузка, как правило, менее концентрирована. Водяные тепловые сети в современных городах обслуживают большое число потребителей, измеряемое нередко тысячами и даже десятками тысяч присоединенных зданий.

Водяные тепловые сети должны четко разделяться на магистральные и распределительные. К магистральным обычно относятся теплопроводы, соединяющие источники теплоты с районами теплового потребления, а также между собой. Теплоноситель поступает из магистральных в распределительные сети и по распределительным сетям подается через групповые тепловые подстанции или местные тепловые подстанции к теплопотребляющим установкам абонентов. Непосредственное присоединение тепловых потребителей к магистральным сетям не следует допускать, за исключением случаев присоединения крупных промышленных предприятий.

Различают радиальные и кольцевые тепловые сети. Наиболее часто применяются радиальные сети, которые характеризуются постепенным уменьшением диаметра по мере удаления от источника теплоснабжения и снижения тепловой нагрузки (рис. 26). Такие сети просты в эксплуатации и требуют наименьших капитальных затрат.

Недостатком радиальных сетей является отсутствие резервирования. При аварии на одной из магистралей, например в точке а магистрали I , прекратится подача теплоты всем потребителям, расположенным после точки а по ходу теплоносителя. При аварии в начале магистрали прекращается теплоснабжение всех потребителей; присоединенных к этой магистрали. Для резервирования снабжения потребителей теплотой могут предусматриваться перемычки между магистралями. Перемычки прокладываются повышенного диаметра, они соединяют середины или концы магистралей.

При теплоснабжении крупных городов от нескольких ТЭЦ целесообразно предусмотреть взаимную блокировку ТЭЦ путем соединения их магистралей блокировочными связями. В этом случае может быть создана объединенная кольцевая тепловая сеть с несколькими источниками питания. Схема такой сети показана на рис. 27. В такую же систему в ряде случаев могут быть объединены тепловые сети ТЭЦ и крупных районных или промышленных котельных.

Кольцевание сетей значительно удорожает сети, но повышает надежность теплоснабжения. Кольцевание промышленных тепловых сетей иногда является обязательным при снабжении теплотой потребителей, не допускающих перерывов в подаче теплоносителя, как правило, для технологических потребностей. В этом случае кольцевание может быть заменено дублированием, т. е. прокладкой параллельно двух паропроводов или теплопроводов. Второй паропровод или теплопровод в этом случае находится в «горячем резерве». При соответствующих обоснованиях на промышленных предприятиях предусматривается резервная мощность тепловых сетей для последующего расширения предприятия или отдельных цехов.

Объединение магистральных тепловых сетей нескольких источников теплоты наряду с резервированием теплоснабжения позволяет уменьшить суммарный котельный резерв на ТЭЦ и увеличить степень использования наиболее экономичного оборудования в системе за счет оптимального распределения нагрузки между источниками теплоты.

Учитывая зависимость отчисла потребителœей, их потребностей в тепловой энергии, а также требований к качеству и бесперебойности теплоснабжения для определœенных категорий абонентов тепловые сети выполняются радиальными (тупиковыми) или кольцевыми.

Тупиковая схема (рисунок) является наиболее распространенной. Она применяется при обеспечении тепловой энергией города, квартала или посœелка от одного источника – теплоэлектроцентрали или котельной. По мере удаления магистрали от источника уменьшаются диаметры теплопроводов 1, упрощаются конструкция, состав сооружений и оборудование на тепловых сетях в соответствии со снижением тепловой нагрузки. Для этой схемы характерно то, что при аварии магистрали абоненты, подключенные к тепловой сети после места аварии, не обеспечиваются тепловой энергией.

Для повышения надежности обеспечения потребителœей 2 тепловой энергией между смежными магистралями устраивают перемычки 3, которые позволяют при аварии какой-либо магистрали переключать подачу тепловой энергии. Согласно нормам проектирования тепловых сетей, устройство перемычек обязательно, в случае если мощность магистралей 350 МВт и более. В этом случае диаметр магистралей, как правило, 700 мм и более. Наличие перемычек частично исключает основной недостаток этой схемы и создает возможность бесперебойного теплоснабжения потребителœей. В аварийных условиях допускается частичное снижение подачи тепловой энергии. К примеру, согласно Нормам проектирования, перемычки рассчитывают на обеспечение 70 %-ной суммарной тепловой нагрузки (максимального часового расхода на отопление и вентиляцию и среднечасового на горячее водоснабжение).

В развивающихся районах города резервирующие перемычки предусматривают между смежными магистралями независимо от тепловой мощности, но исходя из очередности развития. Перемычки предусматривают также и между магистралями в тупиковых схемах при теплоснабжении района от нескольких источников теплоты (ТЭЦ, районных и квартальных котельных 4), что повышает надежность теплоснабжения. Вместе с тем, в летний период при работе одной или двух котельных на нормальном режиме можно отключать несколько котельных, работающих с минимальной нагрузкой. При этом наряду с повышением КПД котельных создаются условия для своевременного проведения профилактического и капитального ремонтов отдельных участков тепловой сети и собственно котельных. На крупных ответвлениях (см. рисунок) предусматриваются секционирующие камеры 5. Для предприятий, не допускающих перерыва в подаче тепловой энергии, предусматривают схемы тепловых сетей с двусторонним питанием, местные резервные источники или кольцевые схемы.

Кольцевая схема (рисунок) предусматривается в крупных городах. Для устройства таких тепловых сетей требуются большие капитальные вложения по сравнению с тупиковыми. Достоинство кольцевой схемы – наличие нескольких источников, благодаря чему повышается надежность теплоснабжения и требуется меньшая суммарная резервная мощность котельного оборудования. При увеличении стоимости кольцевой магистрали снижаются капитальные затраты на строительство источников тепловой энергии. Кольцевая магистраль 1 подключена к трем ТЭЦ, потребители 2 через центральные тепловые пункты 6 присоединœены к кольцевой магистрали по тупиковой схеме. На крупных ответвлениях предусмотрены секционирующие камеры 5. Промышленные предприятия 7 также присоединœены по тупиковой схеме.

Бесканальная прокладка теплопроводов по конструкции тепловой изоляции подразделяется на засыпную, сборную, сборно-литую и монолитную. Основной недостаток бесканальной прокладки – повышенная просадка и наружная коррозия теплопроводов, а также увеличенные теплопотери в случае нарушения гидроизоляции теплоизолирующего слоя. В значительной мере недостатки бесканальных прокладок тепловых сетей устраняются при использовании теплогидроизоляции на базе полимербетонных смесей.

Теплопроводы в каналах укладывают на подвижные или неподвижные опоры. Подвижные опоры служат для передачи собственного веса теплопроводов на несущие конструкции. Вместе с тем, они обеспечивают перемещение труб, происходящее вследствие изменения их длины при изменении их длинны при изменении температуры теплоносителя. Подвижные опоры бывают скользящие и катковые.

Скользящие опоры используют в тех случаях, когда основание под опоры должна быть сделано достаточно прочным для восприятия больших горизонтальных нагрузок. В противном случае устанавливают катковые опоры, создающие меньшие горизонтальные нагрузки. По этой причине при прокладке трубопроводов больших диаметров в тоннелях, на каркасах или мачтах следует ставить катковые опоры.

Неподвижные опоры служат для распределœения термических удлинœений теплопровода между компенсаторами и для обеспечения равномерной работы последних. В камерах подземных каналов и при надземных прокладках неподвижные опоры выполняют в виде металлических конструкций, сваренных или соединœенных на болтах с трубами. Эти конструкции заделывают в фундаменты, стены и перекрытия каналов.

Для восприятия температурных удлинœений и разгрузки теплопроводов от температурных напряжений на теплосœети устанавливают радиальные (гибкие и волнистые шарнирного типа) и осœевые (сальниковые и линзовые) компенсаторы.

Гибкие компенсаторы П - и S - образные изготовляют из труб и отводов (гнутых, крутоизогнутых и сварных) для теплопроводов диаметром от 500 до 1000 мм. Такие компенсаторы устанавливают в непроходных каналах, когда невозможен осмотр проложенных теплопроводов, а также в зданиях при бесканальной прокладке. Допустимый радиус изгиба труб при изготовлении компенсаторов составляет 3,5…4,5 наружного диаметра трубы.

С целью увеличения компенсирующей способности гнутых компенсаторов и уменьшения компенсационных напряжений обычно их предварительно растягивают. Для этого компенсатор в холодном состоянии растягивается в основании петли, с тем чтобы при подаче горячего теплоносителя и соответствующем удлинœении теплопровода плечи компенсатора оказались в положении, при котором напряжения будут минимальные.

Сальниковые компенсаторы имеют небольшие размеры, большую компенсирующую способность оказывать незначительное сопротивление протекающей жидкости. Их изготовляют односторонними и двусторонними для труб диаметром от 100 до 1000 мм. Сальниковые компенсаторы состоят из корпуса с фланцем на уширенной передней части. В корпус компенсатора вставлен подвижный стакан с фланцем для установки компенсатора на трубопроводе. Чтобы сальниковый компенсатор не пропускал теплоноситель между кольцами, в промежутке между корпусом и стаканом укладывают сальниковую набивку. Сальниковую набивку вжимают фланцевым вкладышем с помощью шпилек, ввинчиваемых в корпус компенсатора. Компенсаторы крепят к неподвижным опорам.

Камера для установки задвижек на тепловых сетях изображена на рисунке. При подземных прокладках теплосœетей для обслуживания запорной арматуры устраивают подземные камеры 3 прямоугольной формы. В камерах прокладывают ответвления 1 и 2 сети к потребителям. Горячая вода в здание подается по теплопроводу, укладываемому с правой стороны канала. Подающий 7 и обратный 6 теплопроводы устанавливают на опоры 5 и покрывают изоляцией. Стены камер выкладывают из кирпича, блоков или панелœей, перекрытия сборные – из желœезобетона в виде ребристых или плоских плит, дно камеры – из бетона. Вход в камеры через чугунные люки. Важно заметить, что для спуска в камеру под люками в стене заделывают скобы или устанавливают металлические лестницы. Высота камеры должна быть не менее 1800 мм. Ширину выбирают с таки расчетом, чтобы расстояния между стенами и трубами были не менее 500 м.

Вопросы для самоконтроля:

1. Что называют тепловыми сетями?

2. Как классифицируются тепловые сети?

3. В чем преимущества и недостатки кольцевой и тупиковой сетей?

4. Что называют теплопроводом?

5. Назовите способы прокладывания тепловых сетей.

6. Назовите назначение и виды изоляции теплопроводов.

7. Назовите трубы, из которых монтируют тепловые сети.

8. Назовите назначение компенсаторов.

6.1 Выбор системы теплоснабжения объекта производится на основании утвержденной в установленном порядке схемы теплоснабжения.

Принятая к разработке в проекте схема теплоснабжения должна обеспечивать:

безопасность и надежность теплоснабжения потребителей;

энергетическую эффективность теплоснабжения и потребления тепловой энергии;

нормативный уровень надежности, определяемый тремя критериями: вероятностью безотказной работы, готовностью (качеством) теплоснабжения и живучестью;

требования экологии;

безопасность эксплуатации.

6.2 Функционирование тепловых сетей и СЦТ в целом не должно приводить:

а) к концентрации, превышающей предельно допустимую, в процессе эксплуатации токсичных и вредных для населения, ремонтно-эксплуатационного персонала и окружающей среды веществ в тоннелях, каналах, камерах, помещениях и других сооружениях, в атмосфере, с учетом способности атмосферы к самоочищению в конкретном жилом квартале, микрорайоне, населенном пункте и т.д.;

б) к стойкому нарушению естественного (природного) теплового режима растительного покрова (травы, кустарников, деревьев), под которым прокладываются теплопроводы.

6.3 Тепловые сети, независимо от способа прокладки и системы теплоснабжения, не должны проходить по территории кладбищ, свалок, скотомогильников, мест захоронения радиоактивных отходов, полей орошения, полей фильтрации и других участков, представляющих опасность химического, биологического и радиоактивного загрязнения теплоносителя.

Технологические аппараты промышленных предприятий, от которых могут поступать в тепловые сети вредные вещества, должны присоединяться к тепловым сетям через водоподогреватель с дополнительным промежуточным циркуляционным контуром между таким аппаратом и водоподогревателем при обеспечении давления в промежуточном контуре меньше, чем в тепловой сети. При этом следует предусматривать установку пробоотборных точек для контроля вредных примесей.

Системы горячего водоснабжения потребителей к паровым сетям должны присоединяться через пароводяные подогреватели.

6.4 Безопасная эксплуатация тепловых сетей должна обеспечиваться путем разработки в проектах мер, исключающих:

возникновение напряжений в оборудовании и трубопроводах выше предельно допустимых;

возникновение перемещений, приводящих к потере устойчивости трубопроводов и оборудования;

изменения параметров теплоносителя, приводящие к выходу из строя (отказу, аварии) трубопроводов тепловых сетей и оборудования источника теплоснабжения, теплового пункта или потребителя;

несанкционированный контакт людей непосредственно с горячей водой или с горячими поверхностями трубопроводов (и оборудования) при температурах теплоносителя более 55 °С;

поступление теплоносителя в системы теплоснабжения с температурами выше определяемых нормами безопасности;

снижение при отказах СЦТ температуры воздуха в жилых и производственных помещениях потребителей второй и третьей категорий ниже допустимых величин (4.2);

слив сетевой воды в непредусмотренных проектом местах;

превышение уровня шума и вибрации относительно требований СН 2.2.4/2.1.8.562;

несоответствие параметрам и критериям, обозначенным в разделе "Безопасность и надежность теплоснабжения" утвержденной в установленном порядке схемы теплоснабжения.

6.5 Температура на поверхности теплоизоляционной конструкции теплопроводов, арматуры и оборудования должна соответствовать СП 61.13330 и не должна превышать:

при прокладке теплопроводов в подвалах зданий, технических подпольях, тоннелях и проходных каналах, 45 °С;

при надземной прокладке, в местах доступных для обслуживания, 55 °С.

6.6 Система теплоснабжения (открытая, закрытая, в том числе с отдельными сетями горячего водоснабжения, смешанная) выбирается на основании утвержденной в установленном порядке схемы теплоснабжения.

6.7 Непосредственный водоразбор сетевой воды у потребителей в закрытых системах теплоснабжения не допускается.

6.8 В открытых системах теплоснабжения подключение части потребителей горячего водоснабжения через водо-водяные теплообменники на тепловых пунктах абонентов (по закрытой системе) допускается как временное при условии обеспечения (сохранения) качества сетевой воды согласно требованиям действующих нормативных документов.

6.9 При использовании атомных источников теплоты должны проектироваться системы теплоснабжения, исключающие вероятность попадания радионуклидов от самого источника в сетевую воду, трубопроводы, оборудование СЦТ и в приемники теплоты потребителей.

6.10 В составе СЦТ должны предусматриваться:

аварийно-восстановительные службы (ABC), численность персонала и техническая оснащенность которых должны обеспечивать полное восстановление теплоснабжения при отказах на тепловых сетях в сроки, указанные в таблице 2;

Таблица 2

собственные ремонтно-эксплуатационные базы (РЭБ) - для районов тепловых сетей с объемом эксплуатации 1000 условных единиц и более. Численность персонала и техническая оснащенность РЭБ определяются с учетом состава оборудования, применяемых конструкций теплопроводов, тепловой изоляции и т.д.;

механические мастерские - для участков (цехов) тепловых сетей с объемом эксплуатации менее 1000 условных единиц;

единые ремонтно-эксплуатационные базы - для тепловых сетей, которые входят в состав подразделений тепловых электростанций, районных котельных или промышленных предприятий.

Схемы тепловых сетей

6.11 Водяные тепловые сети надлежит проектировать, как правило, двухтрубными, подающими одновременно теплоту на отопление, вентиляцию, горячее водоснабжение и технологические нужды.

Многотрубные и однотрубные магистральные тепловые сети допускается применять при технико-экономическом обосновании.

Многотрубные распределительные тепловые сети следует прокладывать после центральных тепловых пунктов при наличии у потребителей системы централизованного горячего водоснабжения, а также при различных температурных графиках в системах отопления, вентиляции и технологических потребителей при независимом присоединении.

Тепловые сети, транспортирующие в открытых системах теплоснабжения сетевую воду в одном направлении, при надземной прокладке допускается проектировать в однотрубном исполнении при длине транзита до 5 км. При большей протяженности и отсутствии резервной подпитки СЦТ от других источников теплоты тепловые сети должны выполняться в два (или более) параллельных теплопровода.

Самостоятельные тепловые сети для присоединения технологических потребителей теплоты следует предусматривать, если качество и параметры теплоносителя отличаются от принятых в тепловых сетях.

6.12 Схема и конфигурация тепловых сетей должны обеспечивать теплоснабжение на уровне заданных показателей надежности путем:

применения наиболее прогрессивных конструкций и технических решений;

совместной работы нескольких источников теплоты;

прокладки резервных теплопроводов;

устройства перемычек между тепловыми сетями смежных тепловых районов.

6.13 Тепловые сети могут быть кольцевыми и тупиковыми, резервированными и нерезервированными.

Число и места размещения резервных трубопроводных соединений между смежными теплопроводами следует определять по критерию вероятности безотказной работы.

6.14 Системы отопления потребителей могут присоединяться к двухтрубным водяным тепловым сетям по независимой и зависимой схеме в соответствии с заданием на проектирование.

Как правило, по независимой схеме, предусматривающей установку в тепловых пунктах водоподогревателей, допускается присоединять, при обосновании, системы отопления и вентиляции зданий в 12 этажей и выше, а также других потребителей, если такое присоединение обусловлено гидравлическим режимом работы системы.

6.15 Горячая вода, поступающая к потребителю, должна отвечать требованиям технических регламентов, санитарных правил и нормативов, определяющих ее безопасность.

Качество подпиточной и сетевой воды для открытых систем теплоснабжения и качество воды горячего водоснабжения в закрытых системах должно удовлетворять требованиям к питьевой воде в соответствии с СанПиН 2.1.4.1074.

Использование в закрытых системах теплоснабжения технической воды допускается при наличии термической деаэрации с температурой не менее 100 °С (деаэраторы атмосферного давления). Для открытых систем теплоснабжения деаэрация также должна производиться при температуре не менее 100 °С в соответствии с СанПиН 2.1.4.2496.

Другие требования, предъявляемые к качеству сетевой и подпиточной воды, приведены в приложении Б.

6.16 Установка для подпитки системы теплоснабжения на теплоисточнике должна обеспечивать подачу в тепловую сеть в рабочем режиме воду соответствующего качества и аварийную подпитку водой из систем хозяйственно-питьевого или производственного водопроводов .

Расход подпиточной воды в рабочем режиме должен компенсировать расчетные (нормируемые) потери сетевой воды в системе теплоснабжения.

Расчетные (нормируемые) потери сетевой воды в системе теплоснабжения включают расчетные технологические потери (затраты) сетевой воды и потери сетевой воды с нормативной утечкой из тепловой сети и систем теплопотребления.

Среднегодовая утечка теплоносителя (м/ч) из водяных тепловых сетей должна быть не более 0,25% среднегодового объема воды в тепловой сети и присоединенных системах теплоснабжения независимо от схемы присоединения (за исключением систем горячего водоснабжения, присоединенных через водоподогреватели). Сезонная норма утечки теплоносителя устанавливается в пределах среднегодового значения.

Технологические потери теплоносителя включают количество воды на наполнение трубопроводов и систем теплопотребления при их плановом ремонте и подключении новых участков сети и потребителей, промывку, дезинфекцию, проведение регламентных испытаний трубопроводов и оборудования тепловых сетей .

Для компенсации этих расчетных технологических потерь (затрат) сетевой воды необходима дополнительная производительность водоподготовительной установки и соответствующего оборудования (свыше 0,25% объема теплосети), которая зависит от интенсивности заполнения трубопроводов. Во избежание гидравлических ударов и лучшего удаления воздуха из трубопроводов максимальный часовой расход воды () при заполнении трубопроводов тепловой сети с условным диаметром () не должен превышать значений, приведенных в таблице 3. При этом скорость заполнения тепловой сети должна быть увязана с производительностью источника подпитки и может быть ниже указанных расходов .

Таблица 3 - Максимальный часовой расход воды при заполнении трубопроводов тепловой сети

В результате для закрытых систем теплоснабжения максимальный часовой расход подпиточной воды (, м/ч) составляет:

где - расход воды на заполнение наибольшего по диаметру секционированного участка тепловой сети, принимаемый по таблице 3, либо ниже при условии такого согласования;

Объем воды в системах теплоснабжения, м.

При отсутствии данных по фактическим объемам воды допускается принимать его равным 65 мна 1 МВт расчетной тепловой нагрузки при закрытой системе теплоснабжения, 70 мна 1 МВт - при открытой системе и 30 мна 1 МВт средней нагрузки - для отдельных сетей горячего водоснабжения.

В закрытых системах теплоснабжения на источниках теплоты мощностью 100 МВт и более следует предусматривать установку баков запаса химически обработанной и деаэрированной подпиточной воды вместимостью 3% объема воды в системе теплоснабжения.

Внутренняя поверхность баков должна быть защищена от коррозии, а вода в них - от аэрации, при этом должно обеспечиваться обновление воды в баках.

Число баков независимо от системы теплоснабжения принимается не менее двух по 50% рабочего объема каждый.

6.17 Для открытых систем теплоснабжения, а также при отдельных тепловых сетях на горячее водоснабжение с целью выравнивания суточного графика расхода воды (производительности ВПУ) на источниках теплоты должны предусматриваться баки-аккумуляторы химически обработанной и деаэрированной подпиточной воды по СанПиН 2.1.4.2496.

Расчетная вместимость баков-аккумуляторов должна быть равной десятикратной величине среднечасового расхода воды на горячее водоснабжение. Внутренняя поверхность баков должна быть защищена от коррозии, а вода в них - от аэрации, при этом должно предусматриваться непрерывное обновление воды в баках.

При расположении всех баков-аккумуляторов на источнике теплоты максимальный часовой расход подпиточной воды (, м/ч), подаваемой с источника, составляет

где - максимальный расход воды на горячее водоснабжение, м/ч.

6.18 При расположении части баков-аккумуляторов в районе теплоснабжения расход подпиточной воды, подаваемой с источника теплоты, может быть уменьшен до усредненного значения (, м/ч), равного

где - коэффициент, определяемый проектной организацией в зависимости от объема баков-аккумуляторов, установленных на источнике теплоты и вне его;

Усредненный расчетный расход воды на горячее водоснабжение.

При этом на источнике теплоты должны предусматриваться баки-аккумуляторы вместимостью не менее 25% общей расчетной вместимости баков.

6.19 Устанавливать баки-аккумуляторы горячей воды в жилых кварталах не допускается. Расстояние от баков-аккумуляторов горячей воды до границы жилых кварталов должно быть не менее 30 м. При этом на грунтах 1-го типа просадочности расстояние, кроме того, должно быть не менее 1,5 толщины слоя просадочного грунта.

6.20 Баки-аккумуляторы должны быть ограждены общим валом высотой не менее 0,5 м. Обвалованная территория должна вмещать рабочий объем воды в наибольшем баке и иметь отвод воды в дренажную сеть или систему дождевой канализации.

Для повышения эксплуатационной надежности баков-аккумуляторов следует также предусматривать устройство для защиты от лавинообразного разрушения.

При размещении баков-аккумуляторов вне территории источников теплоты следует предусматривать их ограждение высотой не менее 2,5 м для исключения доступа посторонних лиц к бакам.

6.21 Баки-аккумуляторы горячей воды у потребителей должны предусматриваться в системах горячего водоснабжения промышленных предприятий для выравнивания сменного графика потребления воды объектами, имеющими сосредоточенные кратковременные расходы воды на горячее водоснабжение.

Для объектов промышленных предприятий, имеющих отношение средней тепловой нагрузки на горячее водоснабжение к максимальной тепловой нагрузке на отопление меньше 0,2, баки-аккумуляторы не устанавливаются.

6.22 Для открытых и закрытых систем теплоснабжения должна предусматриваться дополнительно аварийная подпитка химически не обработанной и не деаэрированной водой, расход которой принимается в количестве 2% среднегодового объема воды в тепловой сети и присоединенных системах теплоснабжения независимо от схемы присоединения (за исключением систем горячего водоснабжения, присоединенных через водоподогреватели), если другое не предусмотрено проектными (эксплуатационными) решениями. При наличии нескольких отдельных тепловых сетей, отходящих от коллектора источника тепла, аварийную подпитку допускается определять только для одной наибольшей по объему тепловой сети. Для открытых систем теплоснабжения аварийная подпитка должна обеспечиваться только из систем хозяйственно-питьевого водоснабжения.

6.23 В СЦТ с теплопроводами любой протяженности от источника теплоты до районов теплопотребления допускается использование теплопроводов в качестве теплоаккумулирующих емкостей.

6.24 Для уменьшения потерь сетевой воды и соответственно теплоты при плановых или вынужденных опорожнениях теплопроводов допускается установка в тепловых сетях специальных баков-накопителей, вместимость которых определяется объемом теплопроводов между двумя секционирующими задвижками.

Надежность

6.25 Способность проектируемых и действующих источников теплоты, тепловых сетей и в целом СЦТ обеспечивать в течение заданного времени требуемые режимы, параметры и качество теплоснабжения (отопления, вентиляции, горячего водоснабжения, а также технологических потребностей предприятий в паре и горячей воде) следует определять по трем показателям (критериям): вероятности безотказной работы , коэффициенту готовности , живучести [Ж].

Расчет показателей системы с учетом надежности должен производиться для каждого потребителя.

6.26 Минимально допустимые показатели вероятности безотказной работы следует принимать для:

источника теплоты 0,97;

тепловых сетей 0,9;

потребителя теплоты 0,99;

СЦТ в целом 0,9x0,97x0,99=0,86.

Заказчик вправе устанавливать в техническом задании на проектирование более высокие показатели.

6.27 Для обеспечения безотказности тепловых сетей следует определять:

предельно допустимую длину нерезервированных участков теплопроводов (тупиковых, радиальных, транзитных) до каждого потребителя или теплового пункта;

места размещения резервных трубопроводных связей между радиальными теплопроводами;

достаточность диаметров выбираемых при проектировании новых или реконструируемых существующих теплопроводов для обеспечения резервной подачи теплоты потребителям при отказах;

необходимость замены на конкретных участках конструкций тепловых сетей и теплопроводов на более надежные, а также обоснованность перехода на надземную или тоннельную прокладку;

очередность ремонтов и замен теплопроводов, частично или полностью утративших свой ресурс;

необходимость проведения работ по дополнительному утеплению зданий.

6.28 Готовность системы к исправной работе следует определять по числу часов ожидания готовности: источника теплоты, тепловых сетей, потребителей теплоты, а также - числу часов нерасчетных температур наружного воздуха в данной местности.

6.29 Минимально допустимый показатель готовности СЦТ к исправной работе принимается 0,97.

6.30 Для расчета показателя готовности следует определять (учитывать):

готовность СЦТ к отопительному сезону;

достаточность установленной тепловой мощности источника теплоты для обеспечения исправного функционирования СЦТ при нерасчетных похолоданиях;

способность тепловых сетей обеспечить исправное функционирование СЦТ при нерасчетных похолоданиях;

организационные и технические меры, необходимые для обеспечения исправного функционирования СЦТ на уровне заданной готовности;

максимально допустимое число часов готовности для источника теплоты;

температуру наружного воздуха, при которой обеспечивается заданная внутренняя температура воздуха.

Резервирование

6.31 Следует предусматривать следующие способы резервирования:

организацию совместной работы нескольких источников теплоты на единую систему транспортирования теплоты;

резервирование тепловых сетей смежных районов;

устройство резервных насосных и трубопроводных связей;

установку баков-аккумуляторов.

При подземной прокладке тепловых сетей в непроходных каналах и бесканальной прокладке величина подачи теплоты (%) для обеспечения внутренней температуры воздуха в отапливаемых помещениях не ниже 12 °С в течение ремонтно-восстановительного периода после отказа должна приниматься по таблице 4.

Таблица 4

Диаметр труб тепловых сетей, мм

Расчетная температура наружного воздуха для проектирования отопления , °C

Допускаемое снижение подачи теплоты, %, до

6.32 Участки надземной прокладки протяженностью до 5 км допускается не резервировать, кроме трубопроводов диаметром более 1200 мм в районах с расчетными температурами воздуха для проектирования отопления ниже минус 40 °С.

Резервирование подачи теплоты по тепловым сетям, прокладываемым в тоннелях и проходных каналах, допускается не предусматривать.

6.33 Для потребителей первой категории допускается предусматривать местные резервные источники теплоты (стационарные или передвижные) при отсутствии возможности резервирования от нескольких независимых источников тепла или тепловых сетей.

6.34 Для резервирования теплоснабжения промышленных предприятий допускается предусматривать местные источники теплоты.

Живучесть

6.35 Минимальная подача теплоты по теплопроводам, расположенным в неотапливаемых помещениях и снаружи, в подъездах, лестничных клетках, на чердаках и т.п., должна быть достаточной для поддержания температуры воды в течение всего ремонтно-восстановительного периода после отказа не ниже 3 °С.

6.36 В проектах должны быть разработаны мероприятия по обеспечению живучести элементов систем теплоснабжения, находящихся в зонах возможных воздействий отрицательных температур, в том числе:

организация локальной циркуляции сетевой воды в тепловых сетях до и после ДТП;

спуск сетевой воды из систем теплоиспользования у потребителей, распределительных тепловых сетей, транзитных и магистральных теплопроводов;

прогрев и заполнение тепловых сетей и систем теплоиспользования потребителей во время и после окончания ремонтно-восстановительных работ;

проверка прочности элементов тепловых сетей на достаточность запаса прочности оборудования и компенсирующих устройств;

обеспечение необходимого пригруза бесканально проложенных теплопроводов при возможных затоплениях;

временное использование, при возможности, передвижных источников теплоты.

Сбор и возврат конденсата

6.37 Системы сбора и возврата конденсата источнику теплоты следует предусматривать закрытыми, при этом избыточное давление в сборных баках конденсата должно быть не менее 0,005 МПа.

Открытые системы сбора и возврата конденсата допускается предусматривать при количестве возвращаемого конденсата менее 10 т/ч и расстоянии до источника теплоты до 0,5 км.

6.38 Возврат конденсата от конденсатоотводчиков по общей сети допускается применять при разнице в давлении пара перед конденсатоотводчиками не более 0,3 МПа.

При возврате конденсата насосами число насосов, подающих конденсат в общую сеть, не ограничивается.

Параллельная работа насосов и конденсатоотводчиков, отводящих конденсат от потребителей пара на общую конденсатную сеть, не допускается.

6.39 Напорные конденсатопроводы следует рассчитывать по максимальному часовому расходу конденсата, исходя из условий работы трубопроводов полным сечением при всех режимах возврата конденсата и предохранения их от опорожнения при перерывах в подаче конденсата. Давление в сети конденсатопроводов при всех режимах должно приниматься избыточным.

Конденсатопроводы от конденсатоотводчиков до сборных баков конденсата следует рассчитывать с учетом образования пароводяной смеси.

6.40 Удельные потери давления на трение в конденсатопроводах после насосов надлежит принимать не более 100 Па/м при эквивалентной шероховатости внутренней поверхности конденсатопроводов 0,001 м.

6.41 Вместимость сборных баков конденсата, устанавливаемых в тепловых сетях, на тепловых пунктах потребителей должна приниматься не менее 10-минутного максимального расхода конденсата. Число баков при круглогодичной работе следует принимать не менее двух, вместимостью по 50% каждый. При сезонной работе и менее 3 мес в году, а также при максимальном расходе конденсата до 5 т/ч допускается установка одного бака.

При контроле качества конденсата число баков следует принимать, как правило, не менее трех с вместимостью каждого, обеспечивающей по времени проведение анализа конденсата по всем необходимым показателям, но не менее 30-минутного максимального поступления конденсата.

6.42 Подача (производительность) насосов для перекачки конденсата должна определяться по максимальному часовому расходу конденсата.

Напор насоса должен определяться по величине потери давления в конденсатопроводе с учетом высоты подъема конденсата от насосной до сборного бака и величины избыточного давления в сборных баках.

Напор насосов, подающих конденсат в общую сеть, должен определяться с учетом условий их параллельной работы при всех режимах возврата конденсата.

Число насосов в каждой насосной следует принимать не менее двух, один из которых является резервным.

6.43 Постоянный и аварийный сбросы конденсата в системы дождевой или бытовой канализации допускаются после охлаждения его до температуры 40 °С. При сбросе в систему производственной канализации с постоянными стоками конденсат допускается не охлаждать.

6.44 Возвращаемый от потребителей к источнику теплоты конденсат должен отвечать требованиям правил технической эксплуатации электрических станций и сетей.

Температура возвращаемого конденсата для открытых и закрытых систем не нормируется.

6.45 В системах сбора и возврата конденсата следует предусматривать использование его теплоты для собственных нужд предприятия.


Коммерческий риск (риск снижения объемов услуг) минимизируется правильным выбором маркетинговой стратегии и проведением рекламных акций, непрерывного мониторинга потребностей клиентов, осуществлением гибкой ассортиментной политики. Следует учесть, что при финансово-экономической оценке проекта, принималась осторожная оценка объемов услуг.

Риск доходности(неполучения намеченного уровня доходности проекта) минимизируется за счет гибкой тарифной политики, выбора размера цен на услуги на среднем рыночном уровне, контроля издержек.

Политические риски в определенной мере поддаются ограничению за счет контактов с городскими органами управления, юридической поддержкой проекта в ходе его реализации.

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ

ЗАДАЧИ ГИДРАВЛИЧЕСКОГО РАСЧЕТА

Задачи гидравлического расчета:

1) определение диаметров трубопроводов;

2) определение падения давления (напора);

3) определение давлений (напоров) в различных точках сети;

4) увязка всех точек системы при статическом и динамическом режимах с целью обеспечения допустимых давлений и требуемых напоров в сети и абонентских системах.

В некоторых случаях может быть поставлена также задача определения пропускной способности трубопроводов при известном их диаметре и заданной потере давления.

Результаты гидравлического расчета используют для:

1) определения капиталовложений, расхода металла (труб) и основного объема работ по сооружению тепловой сети;

2) установления характеристик циркуляционных и подпиточных насосов, количества насосов и их размещения;

3) выяснения условий работы источников теплоты, тепловой сети и абонентских систем и выбора схем присоединения теплопотребляющих установок к тепловой сети;

5) разработки режимов эксплуатации систем теплоснабжения.

Исходными данными для проведения гидравлического расчета должны быть заданы схема и профиль тепловой сети, указаны размещение источников теплоты и потребителей и расчетные нагрузки.

СХЕМЫ И КОНФИГУРАЦИИ ТЕПЛОВЫХ СЕТЕЙ

Тепловая сеть является соединительным и транспортным звеном системы теплоснабжения.

Она должна обладать следующими качествами:

1. надежностью; они должны сохранять способность непрерывной подачи теплоносителя к потребителю в необходимом количестве в течение всего года, за исключением кратковременного перерыва для профилактического ремонта в летнее время;

2. управляемостью – т.е. обеспечивать необходимый режим работы, возможность совместной работы источников теплоснабжения и взаимного резервирования магистралей.

Необходимый режим работы – это быстрое и точное распределение теплоносителя по тепловым пунктам в нормальных условиях, в критических ситуациях, а также при совместной работе источников теплоты для экономии топлива.

Схема тепловой сети определяется:

Размещением источников теплоты (ТЭЦ или котельных) по отношению к району теплового потребления;

Характером тепловой на грузки потребителей района;

Видом теплоносителя.

Основные принципы, которыми следует руководствоваться при выборе схемы тепловой сети - надежность и экономичность теплоснабжения. При выборе конфигурации тепловых сетей следует стремиться к получению наиболее простых решений и наименьшей длины теплопроводов.

Повышение надежности сети осуществляется следующими методами:

Повышением надежности отдельных элементов, входящих в систему;

Применением «щадящего» режима работы системы в целом или наиболее повреждаемых ее элементов путем поддержания температуры воды в подающих линиях 100°С и выше, а в обратных линиях 50°С и ниже;

Резервированием, т.е. введением в систему дополнительных элементов, которые могут заменить полностью или частично элементы, вышедшие из строя.

По степени надежности все потребители делятся на две категории:

I – лечебные учреждения со стационарами, промышленные предприятия с постоянным потреблением теплоты на технологические нужды, группы городских потребителей с тепловой мощностью 30 МВт. Перерыв в подаче теплоты допускается только на время переключения, т.е. не более 2 часов;

II – все остальные потребители.

Пар в качестве теплоносителя используется главным образом для технологических нагрузок промышленных предприятий. Основная нагрузка паровых сетей обычно концентрируется в сравнительно небольшом количестве узлов, которыми являются цехи промышленных предприятий. Поэтому удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки невелика. Когда по характеру технологического процесса допустимы кратковременные (до 24 ч) перерывы в подаче пара, наиболее экономичным и в то же время достаточно надежным решением служит прокладка однотрубного паропровода с конденсатопроводом.

Необходимо иметь в виду, что дублирование сетей приводит к значительному возрастанию их стоимости и расхода материалов, в первую очередь стальных трубопроводов. При укладке вместо одного трубопровода, рассчитанного на 100 %-ую нагрузку, двух параллельных, рассчитанных на 50 %-ную нагрузку, площадь поверхности трубопроводов возрастает на 56 %. Соответственно возрастают расход металла и начальная стоимость сети.

Более сложной задачей считается выбор схемы водяных тепловых сетей, т.к. их нагрузка менее концентрирована.

Водяные сети менее долговечны по сравнению с паровыми из-за:

Большей подверженности наружной коррозии стальных трубопроводов подземных водяных сетей по сравнению с паропроводами;

Чувствительности к авариям из-за большей плотности теплоносителя (особенно в крупных системах при зависимом присоединении отопительных установок к тепловой сети).

При выборе схемы водяных тепловых сетей особое внимание уделяют вопросам надежности и резервирования систем теплоснабжения.

Водяные тепловые сети разделяться на магистральные и распределительные .

К магистральным обычно относятся теплопроводы, соединяющие источники теплоты с районами теплового потребления, а также между собой.

Режим работы магистральных тепловых сетей должен обеспечивать наибольшую экономичность при выработке и транспорте теплоты за счет совместной работы ТЭЦ и котельных.

Режим работы распределительных сетей должен обеспечивать наибольшую экономию теплоты при ее использовании за счет регулирования параметров и расхода теплоносителя в соответствии с необходимым режимом потребления, упрощения схем тепловых пунктов, снижения расчетного давления для их оборудования и уменьшения количества регуляторов отпуска теплоты для отопления.

Теплоноситель поступает из магистральных сетей в распределительные сети и по распределительным сетям подается через групповые тепловые пункты или местные тепловые пункты к теплопотребляющим установкам абонентов. Непосредственное присоединение тепловых потребителей к магистральным сетям допускается только при присоединении крупных промышленных предприятий.

Магистральные тепловые сети с помощью задвижек разделяются на секции длиной 1-З км. При раскрытии (разрыве) трубопровода место отказа или аварии локализуется секционирующими задвижками. Благодаря этому уменьшаются потери сетевой воды и сокращается длительность ремонта вследствие уменьшения времени, необходимого для дренажа воды из трубопровода перед проведением ремонта и для заполнения участка трубопровода сетевой водой после ремонта.

Расстояние между секционирующими задвижками выбирается из условия, чтобы время, требуемое для проведения ремонта, было меньше времени, в течение которого внутренняя температура в отапливаемых помещениях при полном отключении отопления при расчетной наружной температуре для отопления не опускалась ниже минимального предельного значения, которое принимают обычно 12-14 °С в соответствии с договором теплоснабжения. Время, необходимое для проведения ремонта, возрастает с увеличением диаметра трубопровода, а также расстояния между секционирующими задвижками.

Рис.1. Принципиальная схема двухтрубной тепловой сети с двумя магистралями: 1 – коллектор ТЭЦ; 2 – магистральная сеть; 3 – распределительная сеть; 4 – секционирующая камера; 5 – секционирующая задвижка; 6 – насос; 7 – блокирующая связь.

Расстояние между секционирующими задвижками должно быть меньше при больших диаметрах трубопроводов и при более низкой расчетной наружной температуре для отопления.

Условие проведения ремонта теплопровода большого диаметра за период допустимого снижения внутренней температуры в отапливаемых зданиях трудно выполнить, так как время ремонта существенно возрастает с увеличением диаметра.

В этом случае необходимо предусматривать системное резервирование теплоснабжения при выходе из строя участка тепловой сети, если не выполняется вышеприведенное условие о времени ремонта. Одним из методов резервирования является блокировка смежных магистралей.

Секционирующие задвижки размещают в узлах присоединения распределительных сетей к магистральным тепловым сетям.

В этих узловых камерах кроме секционирующих задвижек размещаются также головные задвижки распределительных сетей, задвижки на блокирующих линиях между смежными магистралями или между магистралями и резервными источниками теплоснабжения, например районными котельными.

В секционировании паровых магистралей нет необходимости, так как масса пара, требующаяся для заполнения длинных паропроводов, невелика. Секционные задвижки должны быть оборудованы электро- или гидроприводом и иметь телемеханическую связь с центральным диспетчерским пунктом. Распределительные сети должны иметь присоединение к магистрали с обеих сторон секционирующих задвижек с тем, чтобы можно было обеспечить бесперебойное теплоснабжение абонентов при авариях на любом секционированном участке магистрали.

Блокировочные связи между магистралями могут выполняться однотрубными.

В зданиях особой категории, которые не допускают перерывов в теплоснабжении, должна быть предусмотрена возможность резервного теплоснабжения от газовых или электрических нагревателей или же от местных котельных на случай аварийного прекращения централизованного теплоснабжения.

По СНиП 2.04.07-86 допускается уменьшение подачи теплоты в аварийных условиях до 70 % суммарного расчетного расхода (максимально-часового на отопление и вентиляцию и среднечасового на горячее водоснабжение). Для предприятий, в которых не допускаются перерывы в подаче теплоты, должны предусматриваться дублированные или кольцевые схемы тепловых сетей. Расчетные аварийные расходы теплоты должны приниматься в соответствии с режимом работы предприятий.

Радиус действия тепловой сети (рис.1) 15 км. До конечного района теплопотребления сетевая вода передается по двум двухтрубным транзитным магистралям длиной 10 км. Диаметр магистралей на выходе с ТЭЦ 1200 мм. По мере распределения воды в попутные ответвления диаметры магистральных линий уменьшаются. В конечный район теплового потребления сетевая вода вводится по четырем магистралям диаметром 700 мм, а затем распределяется по восьми магистралям диаметром 500 мм. Блокировочные связи между магистралями, а так же резервирующие насосные подстанции установлены только на линиях диаметром 800 мм и более.

Такое решение допустимо в том случае, когда при принятом расстоянии между секционирующими задвижками (на схеме 2 км) время, необходимое для ремонта трубопровода диаметром 700 мм, меньше времени, в течение которого внутренняя температура отапливаемых зданий при отключении отопления при наружной температуре 1 снизится от 18 до 12 °С (не ниже).

Блокировочные связи и секционирующие задвижки распределены таким образом, что при аварии на любом участке магистрали диаметром 800 мм и более обеспечивается теплоснабжение всех абонентов, присоединенных к тепловой сети. Теплоснабжение абонентов нарушается только при авариях на линиях диаметром 700 мм и менее.

В этом случае прекращается теплоснабжение абонентов, расположенных за местом аварии (по ходу теплоты).

При теплоснабжении крупных городов от нескольких ТЭЦ целесообразно предусмотреть взаимную блокировку ТЭЦ посредством соединения их магистралей блокировочными связями. В этом случае может быть создана объединенная кольцевая тепловая сеть с несколькими источниками питания (рис. 2). В такую же систему могут быть в ряде случаев объединены тепловые сети ТЭЦ и крупных районных или промышленных котельных.

Объединение магистральных тепловых сетей нескольких источников теплоты наряду с резервированием теплоснабжения позволяет уменьшить суммарный котельный резерв на ТЭЦ и увеличить степень использования наиболее экономичного оборудования в системе за счет оптимального распределения нагрузки между источника ми теплоты.

Блокирующие связи между магистралями большого диаметра должны иметь достаточную пропускную способность, обеспечивающую передачу резервирующих потоков воды. В необходимых случаях для увеличения пропускной способности блокирующих связей сооружаются насосные подстанции.

Независимо от блокирующих связей между магистралями целесообразно в городах с развитой нагрузкой горячего водоснабжения предусматривать перемычки сравнительно небольшого диаметра между смежными распределительными тепловыми сетями для резервирования нагрузки горячего водоснабжения.

При диаметрах магистралей, отходящих от источника теплоты, 700 мм и менее обычно применяют радиальную (лучевую) схему тепловой сети с постепенным уменьшением диаметра по мере удаления от станции и снижения присоединенной тепловой нагрузки (рис. 3). Такая сеть наиболее дешевая по начальным затратам, требует наименьшего расхода металла на сооружение и проста в эксплуатации. Однако при аварии на магистрали радиальной сети прекращается теплоснабжение абонентов, присоединенных за местом аварии. Например, при аварии в точке «а» на радиальной магистрали 1 прекращается питание всех потребителей, расположенных по направлению трассы от ТЭЦ после точки а. Если происходит авария на магистрали вблизи станции, то прекращается теплоснабжение всех потребителей, присоединенных к магистрали. Такое решение допустимо, если время ремонта трубопроводов диаметром не менее 700 мм удовлетворяет вышесказанному условию.

Для более надежного теплоснабжения тепловые сети должны сооружаться по блочному принципу. Блоком должна являться распределительная сеть с радиусом действия 500-800 м. Каждый блок должен обеспечивать теплоснабжение жилого микрорайона примерно в 10 тыс квартир или тепловая мощность которого 30-50 МВт. Блок должен быть непосредственно присоединен к коллектору источника, или иметь двустороннее теплоснабжение от тепловых магистралей.

На тепловой карте района ориентировочно намечаются места ГТП;

После размещения ГТП намечают возможные трассы магистралей и перемычек между ними;

Намечают размещение распределительных сетей.

Распределительные сети проектируются тупиковыми, секционирующие задвижки не проектируются.

Распределительные сети разрешается прокладывать по подвалам зданий

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: